
1

Learning the bash Shell,
3rd Edition
Table of Contents

2

Preface
bash Versions
Summary of bash Features
Intended Audience
Code Examples
Chapter Summary
Conventions Used in This Handbook
We'd Like to Hear from You
Using Code Examples
Safari Enabled
Acknowledgments for the First Edition
Acknowledgments for the Second Edition
Acknowledgments for the Third Edition

1. bash Basics

3

1.1. What Is a Shell?
1.2. Scope of This Book
1.3. History of UNIX Shells

1.3.1. The Bourne Again Shell
1.3.2. Features of bash

1.4. Getting bash
1.5. Interactive Shell Use

1.5.1. Commands, Arguments, and Options

1.6. Files
1.6.1. Directories
1.6.2. Filenames, Wildcards, and Pathname
Expansion
1.6.3. Brace Expansion

1.7. Input and Output
1.7.1. Standard I/O
1.7.2. I/O Redirection
1.7.3. Pipelines

1.8. Background Jobs
1.8.1. Background I/O
1.8.2. Background Jobs and Priorities

1.9. Special Characters and Quoting
1.9.1. Quoting
1.9.2. Backslash-Escaping
1.9.3. Quoting Quotation Marks
1.9.4. Continuing Lines
1.9.5. Control Keys

4

1.10. Help

2. Command-Line Editing
2.1. Enabling Command-Line Editing
2.2. The History List
2.3. emacs Editing Mode

2.3.1. Basic Commands
2.3.2. Word Commands
2.3.3. Line Commands
2.3.4. Moving Around in the History List
2.3.5. Textual Completion
2.3.6. Miscellaneous Commands

2.4. vi Editing Mode
2.4.1. Simple Control Mode Commands
2.4.2. Entering and Changing Text
2.4.3. Deletion Commands
2.4.4. Moving Around in the History List
2.4.5. Character-Finding Commands
2.4.6. Textual Completion
2.4.7. Miscellaneous Commands

2.5. The fc Command
2.6. History Expansion
2.7. readline

2.7.1. The readline Startup File
2.7.2. Key Bindings Using bind

2.8. Keyboard Habits

3. Customizing Your Environment

5

3.1. The .bash_profile, .bash_logout, and .bashrc
Files
3.2. Aliases
3.3. Options

3.3.1. shopt

3.4. Shell Variables
3.4.1. Variables and Quoting
3.4.2. Built-In Variables

3.5. Customization and Subprocesses
3.5.1. Environment Variables
3.5.2. The Environment File

3.6. Customization Hints

4. Basic Shell Programming

6

4.1. Shell Scripts and Functions
4.1.1. Functions

4.2. Shell Variables
4.2.1. Positional Parameters
4.2.2. Local Variables in Functions
4.2.3. Quoting with $@ and $*
4.2.4. More on Variable Syntax

4.3. String Operators
4.3.1. Syntax of String Operators
4.3.2. Patterns and Pattern Matching
4.3.3. Length Operator
4.3.4. Extended Pattern Matching

4.4. Command Substitution
4.5. Advanced Examples: pushd and popd

5. Flow Control
5.1. if/else

5.1.1. Exit Status
5.1.2. Return
5.1.3. Combinations of Exit Statuses
5.1.4. Condition Tests
5.1.5. Integer Conditionals

5.2. for
5.3. case
5.4. select
5.5. while and until

6. Command-Line Options and Typed Variables

7

6.1. Command-Line Options
6.1.1. shift
6.1.2. Options with Arguments
6.1.3. getopts

6.2. Typed Variables
6.3. Integer Variables and Arithmetic

6.3.1. Arithmetic Conditionals
6.3.2. Arithmetic Variables and Assignment
6.3.3. Arithmetic for Loops

6.4. Arrays

7. Input/Output and Command-Line Processing
7.1. I/O Redirectors

7.1.1. Here-documents
7.1.2. File Descriptors

7.2. String I/O
7.2.1. echo
7.2.2. printf
7.2.3. read

7.3. Command-Line Processing
7.3.1. Quoting
7.3.2. command, builtin, and enable
7.3.3. eval

8. Process Handling

8

8.1. Process IDs and Job Numbers
8.2. Job Control

8.2.1. Foreground and Background
8.2.2. Suspending a Job

8.3. Signals
8.3.1. Control-Key Signals
8.3.2. kill
8.3.3. ps

8.4. trap
8.4.1. Traps and Functions
8.4.2. Process ID Variables and Temporary
Files
8.4.3. Ignoring Signals
8.4.4. disown
8.4.5. Resetting Traps

8.5. Coroutines
8.5.1. wait
8.5.2. Advantages and Disadvantages of
Coroutines
8.5.3. Parallelization

8.6. Subshells
8.6.1. Subshell Inheritance
8.6.2. Nested Subshells

8.7. Process Substitution

9. Debugging Shell Programs

9

9.1. Basic Debugging Aids
9.1.1. Set Options
9.1.2. Fake Signals
9.1.3. Debugging Variables

9.2. A bash Debugger
9.2.1. Structure of the Debugger
9.2.2. The Preamble
9.2.3. Debugger Functions
9.2.4. A Sample bashdb Session
9.2.5. Exercises

10. bash Administration
10.1. Installing bash as the Standard Shell

10.1.1. POSIX Mode
10.1.2. Command-Line Options

10.2. Environment Customization
10.2.1. umask
10.2.2. ulimit
10.2.3. Types of Global Customization

10.3. System Security Features
10.3.1. Restricted Shell
10.3.2. A System Break-In Scenario
10.3.3. Privileged Mode

11. Shell Scripting

10

11.1. What's That Do?
11.1.1. Comments
11.1.2. Variables and Constants

11.2. Starting Up
11.3. Potential Problems
11.4. Don't Use bash

12. bash for Your System
12.1. Obtaining bash
12.2. Unpacking the Archive
12.3. What's in the Archive

12.3.1. Documentation
12.3.2. Configuring and Building bash
12.3.3. Testing bash
12.3.4. Potential Problems
12.3.5. Installing bash as a Login Shell
12.3.6. Examples

12.4. Who Do I Turn to?
12.4.1. Asking Questions
12.4.2. Reporting Bugs

A. Related Shells

11

A.1. The Bourne Shell
A.2. The IEEE 1003.2 POSIX Shell Standard
A.3. The Korn Shell
A.4. pdksh
A.5. zsh
A.6. Shell Clones and Unix-like Platforms

A.6.1. Cygwin
A.6.2. DJGPP
A.6.3. MKS Toolkit
A.6.4. AT&T UWIN

B. Reference Lists
B.1. Invocation
B.2. Prompt String Customizations
B.3. Built-In Commands and Reserved Words
B.4. Built-In Shell Variables
B.5. Test Operators
B.6. set Options
B.7. shopt Options
B.8. I/O Redirection
B.9. emacs Mode Commands
B.10. vi Control Mode Commands

C. Loadable Built-Ins
D. Programmable Completion

12

Learning the bash Shell,
3rd Edition
Cameron Newham

Copyright © 2009 O'Reilly Media, Inc.

O'Reilly Media, Inc.

13

Preface
The first thing users of the UNIX or Linux operating
systems come face to face with is the shell. "Shell" is the
UNIX term for a user interface to the system—something
that lets you communicate with the computer via the
keyboard and the display. Shells are just separate
programs that encapsulate the system, and, as such, there
are many to choose from.

Systems are usually set up with a "standard" shell that
new users adopt without question. However, some of
these standard shells are rather old and lack many
features of the newer shells. This is a shame, because
shells have a large bearing on your working environment.
Since changing shells is as easy as changing hats, there is
no reason not to change to the latest and greatest in shell
technology.

Of the many shells to choose from, this book introduces
the Bourne Again shell (bash for short), a modern
general-purpose shell. Other useful modern shells are the
Korn shell (ksh) and the "Tenex C shell" (tcsh); both are
also the subjects of O'Reilly handbooks.

14

bash Versions
This book is relevant to all versions of bash, although
older versions lack some of the features of the most
recent version.[1] You can easily find out which version
you are using by typing echo $BASH_VERSION. The
earliest public version of bash was 1.0, and the most
recent is 3.0 (released in July 2004). If you have an older
version, you might like to upgrade to the latest one.
Chapter 12 shows you how to go about it.

[1] Throughout this book we have clearly marked with
footnotes the features that are not present in the earlier
versions.

15

Summary of bash
Features
bash is a backward-compatible evolutionary successor to
the Bourne shell that includes most of the C shell's major
advantages as well as features from the Korn shell and a
few new features of its own. Features appropriated from
the C shell include:

• Directory manipulation, with the pushd, popd,
and dirs commands.

• Job control, including the fg and bg commands
and the ability to stop jobs with CTRL-Z.

• Brace expansion, for generating arbitrary strings.

• Tilde expansion, a shorthand way to refer to
directories.

• Aliases, which allow you to define shorthand
names for commands or command lines.

• Command history, which lets you recall
previously entered commands.

bash's major new features include:

16

• Command-line editing, allowing you to use vi- or
emacs-style editing commands on your command
lines.

• Key bindings that allow you to set up customized
editing key sequences.

• Integrated programming features: the
functionality of several external UNIX
commands, including test, expr, getopt, and echo,
has been integrated into the shell itself, enabling
common programming tasks to be done more
cleanly and efficiently.

• Control structures, especially the select construct,
which enables easy menu generation.

• New options and variables that give you more
ways to customize your environment.

• One dimensional arrays that allow easy
referencing and manipulation of lists of data.

• Dynamic loading of built-ins, plus the ability to
write your own and load them into the running
shell.

17

Intended Audience
This book is designed to address casual UNIX and Linux
users who are just above the "raw beginner" level. You
should be familiar with the process of logging in, entering
commands, and doing simple things with files. Although
Chapter 1 reviews concepts such as the tree-like file and
directory scheme, you may find that it moves too quickly
if you're a complete neophyte. In that case, we
recommend the O'Reilly handbook, Learning the UNIX
Operating System, by Jerry Peek, Grace Todino, and John
Strang.

If you're an experienced user, you may wish to skip
Chapter 1 altogether. But if your experience is with the C
shell, you may find that Chapter 1 reveals a few subtle
differences between the bash and C shells.

No matter what your level of experience is, you will
undoubtedly learn many things in this book that will
make you a more productive bash user—from major
features down to details at the "nook-and-cranny" level
that you may not have been aware of.

If you are interested in shell programming (writing shell
scripts and functions that automate everyday tasks or
serve as system utilities), you should also find this book
useful. However, we have deliberately avoided drawing a
strong distinction between interactive shell use (entering

18

commands during a login session) and shell
programming. We see shell programming as a natural,
inevitable outgrowth of increasing experience as a user.

Accordingly, each chapter depends on those previous to
it, and although the first three chapters are oriented
toward interactive use only, subsequent chapters describe
interactive, user-oriented features in addition to
programming concepts.

This book aims to show you that writing useful shell
programs doesn't require a computing degree. Even if you
are completely new to computing, there is no reason why
you shouldn't be able to harness the power of bash within
a short time.

Toward that end, we decided not to spend too much time
on features of exclusive interest to low-level systems
programmers. Concepts like file descriptors and special
file types might only confuse the casual user, and
anyway, we figure those of you who understand such
things are smart enough to extrapolate the necessary
information from our cursory discussions.

19

Code Examples
This book is full of examples of shell commands and
programs designed to be useful in your everyday life as a
user, not just to illustrate the feature being explained. In
Chapter 4 and onwards, we include various programming
problems, which we call tasks, that illustrate particular
shell programming concepts. Some tasks have solutions
that are refined in subsequent chapters. The later chapters
also include programming exercises, many of which build
on the tasks in the chapter.

Feel free to use any code you see in this book and to pass
it along to friends and colleagues. We especially
encourage you to modify and enhance it yourself.

If you want to try examples but you don't use bash as
your login shell, you must put the following line at the
top of each shell script:

#!/bin/bash

If bash isn't installed as the file /bin/bash, substitute its
pathname in the above.

20

Chapter Summary
If you want to investigate specific topics rather than read
the entire book through, here is a chapter-by-chapter
summary:

Chapter 1 introduces bash and tells you how to install it
as your login shell. Then it surveys the basics of
interactive shell use, including overviews of the UNIX
file and directory scheme, standard I/O, and background
jobs.

Chapter 2 discusses the shell's command history
mechanism (including the emacs- and vi-editing modes),
history substitution and the fc history command, and key
bindings with readline and bind.

Chapter 3 covers ways to customize your shell
environment without programming by using the startup
and environment files. Aliases, options, and shell
variables are the customization techniques discussed.

Chapter 4 is an introduction to shell programming. It
explains the basics of shell scripts and functions, and
discusses several important "nuts-and-bolts"
programming features: string manipulation operators,
brace expansion, command-line arguments (positional
parameters), and command substitution.

21

Chapter 5 continues the discussion of shell programming
by describing command exit status, conditional
expressions, and the shell's flow-control structures: if,
for, case, select, while, and until.

Chapter 6 goes into depth about positional parameters and
command-line option processing, then discusses special
types and properties of variables, integer arithmetic, and
arrays.

Chapter 7 gives a detailed description of bash I/O. This
chapter covers all of the shell's I/O redirectors, as well as
the line-at-a-time I/O commands read and echo. It also
discusses the shell's command-line processing mechanism
and the eval command.

Chapter 8 covers process-related issues in detail. It starts
with a discussion of job control, then gets into various
low-level information about processes, including process
IDs, signals, and traps. The chapter then moves to a
higher level of abstraction to discuss coroutines and
subshells.

Chapter 9 discusses various debugging techniques, like
trace and verbose modes, and the "fake" signal traps. It
then presents in detail a useful shell tool, written using
the shell itself: a bash debugger.

Chapter 10 gives information for system administrators,
including techniques for implementing system-wide shell
customization and features related to system security.

22

Chapter 11 discusses ways to make bash scripts more
maintainable.

Chapter 12 shows you how to go about getting bash and
how to install it on your system. It also outlines what to
do in the event of problems along the way.

Appendix A compares bash to several similar shells,
including the standard Bourne shell, the POSIX shell
standard, the Korn shell (ksh), the public-domain Korn
shell (pdksh), and the Z Shell (zsh).

Appendix B contains lists of shell invocation options,
built-in commands, built-in variables, conditional test
operators, options, I/O redirection, and emacs- and
vi-editing mode commands.

Appendix C gives information on writing and compiling
your own loadable built-ins.

Appendix D looks at the basics of programmable
completion.

23

Conventions Used in
This Handbook
We leave it as understood that when you enter a shell
command, you press RETURN at the end. RETURN is
labeled ENTER on some keyboards.

Characters called CTRL-X, where X is any letter, are
entered by holding down the CTRL (or CTL, or
CONTROL) key and pressing that letter. Although we
give the letter in uppercase, you can press the letter
without the SHIFT key.

Other special characters are LINEFEED (which is the
same as CTRL-J), BACKSPACE (same as CTRL-H),
ESC, TAB, and DEL (sometimes labeled DELETE or
RUBOUT).

This book uses the following font conventions:

Italic

Used for UNIX filenames, commands not built into
the shell (which are files anyway), and shell
functions. Italic is also used for dummy parameters
that should be replaced with an actual value, to
distinguish the vi and emacs programs from their
bash modes, and to highlight special terms the first
time they are defined.

24

Bold

Used for bash built-in commands, aliases, variables,
and options, as well as command lines when they are
within regular text. Bold is used for all elements
typed in by the user within regular text.

Constant Width
Used in examples to show the contents of files or the
output from commands.

Constant Bold
Used in examples to show interaction between the
user and the shell; any text the user types in is shown
in Constant Bold. For example:$ pwd/home/
cam/adventure/carrol $

Constant Italic

Used in displayed command lines for dummy
parameters that should be replaced with an actual
value.

Square Brackets

Used in Chapter 2 to show the position of the cursor
on the command line being edited. For
example:grep -l Alice < ~cam/book/
[a]iw

25

We use UNIX as a shorthand for "UNIX and Linux."
Purists will correctly insist that Linux is not
UNIX—but as far as this book is concerned, they
behave identically.

26

We'd Like to Hear from
You
Please address comments and questions concerning this
book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata,
examples, and any additional information. You can
access this page at:

http://www.oreilly.com/catalog/bash3

To comment or ask technical questions about this book,
send email to:

bookquestions@oreilly.com

For more information about our books, conferences,
Resource Centers, and the O'Reilly Network, see our web
site at:

http://www.oreilly.com

27

http://www.oreilly.com/catalog/bash3
http://www.oreilly.com

Using Code Examples
This book is here to help you get your job done. In
general, you may use the code in this book in your
programs and documentation. You do not need to contact
us for permission unless you're reproducing a significant
portion of the code. For example, writing a program that
uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission.
Answering a question by citing this book and quoting
example code does not require permission. Incorporating
a significant amount of example code from this book into
your product's documentation does require permission.

We appreciate, but do not require, attribution. An
attribution usually includes the title, author, publisher,
and ISBN. For example "Learning the bash Shell, Third
Edition, by Cameron Newham and Bill Rosenblatt.
Copyright 2005 O'Reilly Media, Inc., 0-596-00965-8."

28

Safari Enabled

When you see a Safari® Enabled icon on the cover of
your favorite technology book, that means the book is
available online through the O'Reilly Network Safari
Bookshelf.

Safari offers a solution that's better than e-books. It's a
virtual library that lets you easily search thousands of top
tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most
accurate, current information. Try it for free at
http://safari.oreilly.com.

29

Acknowledgments for
the First Edition
This project has been an interesting experience and
wouldn't have been possible without the help of a number
of people. Firstly, I'd like to thank Brian Fox and Chet
Ramey for creating bash and making it the polished
product it is today. Thanks also to Chet Ramey for
promptly answering all of my questions on bash and
pointing out my errors.

Many thanks to Bill Rosenblatt for Learning the korn
Shell, on which this book is based; Michael O'Reilly and
Michael Malone at iiNet Technologies for their useful
comments and suggestions (and my net.connection!);
Chris Thorne, Justin Twiss, David Quin-Conroy, and my
mum for their comments, suggestions, and corrections;
Linus Torvalds for the Linux operating system which
introduced me to bash and was the platform for all of my
work on the book; Brian Fox for providing a short history
of bash; David Korn for information on the latest Korn
shell. Thanks also to Depeche Mode for "101" as a
backdrop while I worked, Laurence Durbridge for being a
likable pest and never failing to ask "Finished the book
yet?" and Adam (for being in my book).

The sharp eyes of our technical reviewers picked up
many mistakes. Thanks to Matt Healy, Chet Ramey, Bill

30

Reynolds, Bill Rosenblatt, and Norm Walsh for taking
time out to go through the manuscript.

The crew at O'Reilly were indispensable in getting this
book out the door. I'd like to thank Lenny Muellner for
providing me with the formatting tools for the job, Chris
Reilley for the figures, and Edie Freedman for the cover
design. On the production end, I'd like to thank David
Sewell for his copyediting, Clairemarie Fisher O'Leary
for managing the production process, Michael Deutsch
and Jane Ellin for their production assistance, Ellen
Siever for tools support, Kismet McDonough for
providing quality assurance, and Seth Maislin for the
index.

I'm grateful to Frank Willison for taking me up on my
first piece of email to ORA: "What about a book on
bash?"

Last but by no means least, a big thank you to my editor,
Mike Loukides, who helped steer me through this project.

31

Acknowledgments for
the Second Edition
Thanks to all the people at O'Reilly. Gigi Estabrook was
the editor for the second edition. Nicole Gipson Arigo
was the production editor and project manager. Nancy
Wolfe Kotary and Ellie Fountain Maden performed
quality control checks. Seth Maislin wrote the index. Edie
Freedman designed the cover, and Nancy Priest designed
the interior format of the book. Lenny Muellner
implemented the format in troff. Robert Romano updated
the illustrations for the second edition.

32

Acknowledgments for
the Third Edition
Thanks to the production people at O'Reilly and to the
indexer.

Thanks to Chet Ramey for once again swiftly answering
my queries on bash and for providing helpful comments
on the book. I'd also like to thank Ian Macdonald for his
feedback on Programmable Completion.

33

Chapter 1. bash Basics
Since the early 1970s, when it was first created, the
UNIX operating system has become more and more
popular. During this time it has branched out into
different versions, and taken on such names as Ultrix,
AIX, Xenix, SunOS, and Linux. Starting on
minicomputers and mainframes, it has moved onto
desktop workstations and even personal computers used
at work and home. No longer a system used only by
academics and computing wizards at universities and
research centers, UNIX is used in many businesses,
schools, and homes. As time goes on, more people will
come into contact with UNIX.

You may have used UNIX at your school, office, or home
to run your applications, print documents, and read your
electronic mail. But have you ever thought about the
process that happens when you type a command and hit
RETURN?

Several layers of events take place whenever you enter a
command, but we're going to consider only the top layer,
known as the shell. Generically speaking, a shell is any
user interface to the UNIX operating system, i.e., any
program that takes input from the user, translates it into
instructions that the operating system can understand, and
conveys the operating system's output back to the user.

34

Figure 1-1 shows the relationship between user, shell, and
operating system.

Figure 1-1. The shell is a layer around the
UNIX operating system

There are various types of user interfaces. bash belongs to
the most common category, known as character-based
user interfaces. These interfaces accept lines of textual
commands that the user types in; they usually produce
text-based output. Other types of interfaces include the
increasingly common graphical user interfaces (GUI),
which add the ability to display arbitrary graphics (not
just typewriter characters) and to accept input from a
mouse or other pointing device, touch-screen interfaces
(such as those on some bank teller machines), and so on.

35

What Is a Shell?
The shell's job, then, is to translate the user's command
lines into operating system instructions. For example,
consider this command line:

sort -n phonelist > phonelist.sorted

This means, "Sort lines in the file phonelist in numerical
order, and put the result in the file phonelist.sorted."
Here's what the shell does with this command:

1. Breaks up the line into the pieces sort, -n,
phonelist, >, and phonelist.sorted. These pieces
are called words.

2. Determines the purpose of the words: sort is a
command, -n and phonelist are arguments, and >
and phonelist.sorted, taken together, are I/O
instructions.

3. Sets up the I/O according to > phonelist.sorted
(output to the file phone list.sorted) and some
standard, implicit instructions.

4. Finds the command sort in a file and runs it with
the option -n (numerical order) and the argument
phonelist (input filename).

36

Of course, each of these steps really involves several
substeps, each of which includes a particular instruction
to the underlying operating system.

Remember that the shell itself is not UNIX—just the user
interface to it. UNIX is one of the first operating systems
to make the user interface independent of the operating
system.

37

Scope of This Book
In this book you will learn about bash, which is one of
the most recent and powerful of the major UNIX shells.
There are two ways to use bash: as a user interface and as
a programming environment.

This chapter and the next cover interactive use. These two
chapters should give you enough background to use the
shell confidently and productively for most of your
everyday tasks.

After you have been using the shell for a while, you will
undoubtedly find certain characteristics of your
environment (the shell's "look and feel") that you would
like to change, and tasks that you would like to automate.
Chapter 3 shows several ways of doing this.

Chapter 3 also prepares you for shell programming, the
bulk of which is covered in Chapter 4 through Chapter 6.
You need not have any programming experience to
understand these chapters and learn shell programming.
Chapter 7 and Chapter 8 give more complete descriptions
of the shell's I/O and process-handling capabilities, while
Chapter 9 discusses various techniques for debugging
shell programs.

You'll learn a lot about bash in this book; you'll also learn
about UNIX utilities and the way the UNIX operating

38

system works in general. It's possible to become a
virtuoso shell programmer without any previous
programming experience. At the same time, we've
carefully avoided going into excessive detail about UNIX
internals. We maintain that you shouldn't have to be an
internals expert to use and program the shell effectively,
and we won't dwell on the few shell features that are
intended specifically for low-level systems programmers.

39

History of UNIX Shells
The independence of the shell from the UNIX operating
system per se has led to the development of dozens of
shells throughout UNIX history—although only a few
have achieved widespread use.

The first major shell was the Bourne shell (named after its
inventor, Steven Bourne); it was included in the first
popular version of UNIX, Version 7, starting in 1979.
The Bourne shell is known on the system as sh. Although
UNIX has gone through many, many changes, the Bourne
shell is still popular and essentially unchanged. Several
UNIX utilities and administration features depend on it.

The first widely used alternative shell was the C shell, or
csh. This was written by Bill Joy at the University of
California at Berkeley as part of the Berkeley Software
Distribution (BSD) version of UNIX that came out a
couple of years after Version 7.

The C shell gets its name from the resemblance of its
commands to statements in the C Programming
Language, which makes the shell easier for programmers
on UNIX systems to learn. It supports a number of
operating system features (e.g., job control; see Chapter
8) that were unique to BSD UNIX but by now have
migrated to most other modern versions. It also has a few

40

important features (e.g., aliases; see Chapter 3) that make
it easier to use in general.

In recent years a number of other shells have become
popular. The most notable of these is the Korn shell. This
shell is a commercial product that incorporates the best
features of the Bourne and C shells, plus many features of
its own.[1] The Korn shell is similar to bash in most
respects; both have an abundance of features that make
them easy to work with. The advantage of bash is that it
is free. For further information on the Korn shell see
Appendix A.

The Bourne Again Shell

The Bourne Again shell (named in punning tribute to
Steve Bourne's shell) was created for use in the GNU
project.[2] The GNU project was started by Richard
Stallman of the Free Software Foundation (FSF) for the
purpose of creating a UNIX-compatible operating system
and replacing all of the commercial UNIX utilities with
freely distributable ones. GNU embodies not only new
software utilities, but a new distribution concept: the
copyleft. Copylefted software may be freely distributed so
long as no restrictions are placed on further distribution
(for example, the source code must be made freely
available).

bash, intended to be the standard shell for the GNU
system, was officially "born" on Sunday, January 10,

41

1988. Brian Fox wrote the original versions of bash and
readline and continued to improve the shell up until 1993.
Early in 1989 he was joined by Chet Ramey, who was
responsible for numerous bug fixes and the inclusion of
many useful features. Chet Ramey is now the official
maintainer of bash and continues to make further
enhancements.

In keeping with the GNU principles, all versions of bash
since 0.99 have been freely available from the FSF. bash
has found its way onto every major version of UNIX and
is rapidly becoming the most popular Bourne shell
derivative. It is the standard shell included with Linux, a
widely used free UNIX operating system, and Apple's
Mac OS X.

In 1995 Chet Ramey began working on a major new
release, 2.0, which was released to the public for the first
time on December 23, 1996. bash 2.0 added a range of
new features to the old release (the one before being
1.14.7) and brought the shell into better compliance with
various standards. bash 3.0 improves on the previous
version and rounds out the feature list and standards
compliance.

This book describes bash 3.0. It is applicable to all
previous releases of bash. Any features of the current
release that are different in, or missing from, previous
releases will be noted in the text.

42

Features of bash

Although the Bourne shell is still known as the "standard"
shell, bash is becoming increasingly popular. In addition
to its Bourne shell compatibility, it includes the best
features of the C and Korn shells as well as several
advantages of its own.

bash's command-line editing modes are the features that
tend to attract people to it first. With command-line
editing, it's much easier to go back and fix mistakes or
modify previous commands than it is with the C shell's
history mechanism—and the Bourne shell doesn't let you
do this at all.

The other major bash feature that is intended mostly for
interactive users is job control. As Chapter 8 explains, job
control gives you the ability to stop, start, and pause any
number of commands at the same time. This feature was
borrowed almost verbatim from the C shell.

The rest of bash's important advantages are meant mainly
for shell customizers and programmers. It has many new
options and variables for customization, and its
programming features have been significantly expanded
to include function definition, more control structures,
integer arithmetic, advanced I/O control, and more.

43

[1] The Korn shell can be downloaded for free but it
comes with a license that will require payment if the shell
is used in certain situations.

[2] GNU is a recursive acronym, standing for "GNU's Not
UNIX."

44

Getting bash
You may or may not be using bash right now. Your
system administrator probably set your account up with
whatever shell he uses as the "standard" on the system.
You may not even have been aware that there is more
than one shell available.

Yet it's easy for you to determine which shell you are
using. Log in to your system and type echo $SHELL at
the prompt. You will see a response containing sh, csh,
ksh, or bash; these denote the Bourne, C, Korn, and bash
shells, respectively. (There's also a chance that you're
using another shell such as tcsh.)

If you aren't using bash and you want to, then you first
need to find out if it exists on your system. Just type
bash. If you get a new prompt consisting of some
information followed by a dollar sign (e.g., bash3 $),
then all is well; type exit to go back to your normal shell.

If you get a "not found" message, your system may not
have it. Ask your system administrator or another
knowledgeable user; there's a chance that you might have
some version of bash installed on the system in a place
(directory) that is not normally accessible to you. If not,
read Chapter 11 to find out how you can obtain a version
of bash.

45

Once you know you have bash on your system, you can
invoke it from whatever other shell you use by typing
bash as above. However, it's much better to install it as
your login shell, i.e., the shell that you get automatically
whenever you log in. You may be able to do the
installation by yourself. Here are instructions that are
designed to work on the widest variety of UNIX systems.
If something doesn't work (e.g., you type in a command
and get a "not found" error message or a blank line as the
response), you'll have to abort the process and see your
system administrator. Alternatively, turn to Chapter 12
where we demonstrate a less straightforward way of
replacing your current shell.

You need to find out where bash is on your system, i.e.,
in which directory it's installed. You might be able to find
the location by typing whereis bash (especially if you are
using the C shell); if that doesn't work, try whence bash,
which bash, or this complex command:[3]

grep bash /etc/passwd | awk -F: '{print $7}' | sort -u

You should see a response that looks like /bin/bash or
/usr/local/bin/bash.

To install bash as your login shell, type chsh bash-name,
where bash-name is the response you got to your whereis
command (or whatever worked). For example:

% chsh /usr/local/bin/bash

You'll either get an error message saying that the shell is
invalid, or you'll be prompted for your password.[4] Type

46

in your password, then log out and log back in again to
start using bash.

[3] Make sure you use the correct quotation mark in this
command: ' rather than `.

[4] For system security reasons, only certain programs are
allowed to be installed as login shells.

47

Interactive Shell Use
When you use the shell interactively, you engage in a
login session that begins when you log in and ends when
you type exit or logout or press CTRL-D. [5] During a
login session, you type in command lines to the shell;
these are lines of text ending in RETURN that you type in
to your terminal or workstation.

By default, the shell prompts you for each command with
an information string followed by a dollar sign, though as
you will see in Chapter 3, the entire prompt can be
changed.

Commands, Arguments, and
Options

Shell command lines consist of one or more words, which
are separated on a command line by blanks or TABs. The
first word on the line is the command. The rest (if any)
are arguments (also called parameters) to the command,
which are names of things on which the command will
act.

For example, the command line lp myfile consists of the
command lp (print a file) and the single argument myfile.

48

lp treats myfile as the name of a file to print. Arguments
are often names of files, but not necessarily: in the
command line mail cam, the mail program treats cam as
the username to which a message will be sent.

An option is a special type of argument that gives the
command specific information on what it is supposed to
do. Options usually consist of a dash followed by a letter;
we say "usually" because this is a convention rather than
a hard-and-fast rule. The command lp -h myfile contains
the option -h, which tells lp not to print the "banner page"
before it prints the file.

Sometimes options take their own arguments. For
example, lp -d lp1 -h myfile has two options and one
argument. The first option is -d lp1, which means "Send
the output to the printer (destination) called lp1." The
second option and argument are the same as in the
previous example.

[5] The shell can be set up so that it ignores a single
CTRL-D to end the session. We recommend doing this,
because CTRL-D is too easy to type by accident. See the
section on options in Chapter 3 for further details.

49

Files
Although arguments to commands aren't always files,
files are the most important types of "things" on any
UNIX system. A file can contain any kind of information,
and indeed there are different types of files. Three types
are by far the most important:

Regular files

Also called text files; these contain readable
characters. For example, this book was created from
several regular files that contain the text of the book
plus human-readable formatting instructions to the
troff word processor.

Executable files

Also called programs; these are invoked as
commands. Some can't be read by humans;
others—the shell scripts that we'll examine in this
book—are just special text files. The shell itself is a
(non-human-readable) executable file called bash.

Directories

These are like folders that contain other
files—possibly other directories (called
subdirectories).

50

Directories

Let's review the most important concepts about
directories. The fact that directories can contain other
directories leads to a hierarchical structure, more
popularly known as a tree, for all files on a UNIX system.

Figure 1-1 shows part of a typical directory tree;
rectangles are directories and ovals are regular files.

Figure 1-2. A tree of directories and files

51

The top of the tree is a directory called root that has no
name on the system.[6] All files can be named by
expressing their location on the system relative to root;
such names are built by listing all of the directory names
(in order from root), separated by slashes (/), followed by
the file's name. This way of naming files is called a full
(or absolute) pathname.

For example, say there is a file called aaiw that is in the
directory book, which is in the directory cam, which is in
the directory home, which is in the root directory. This
file's full pathname is /home/cam/book/aaiw.

The working directory

Of course, it's annoying to have to use full pathnames
whenever you need to specify a file. So there is also the
concept of the working directory (sometimes called the
current directory), which is the directory you are "in" at
any given time. If you give a pathname with no leading
slash, then the location of the file is worked out relative to
the working directory. Such pathnames are called relative
pathnames; you'll use them much more often than full
pathnames.

When you log in to the system, your working directory is
initially set to a special directory called your home (or
login) directory. System administrators often set up the
system so that everyone's home directory name is the

52

same as their login name, and all home directories are
contained in a common directory under root.

For example, /home/cam is a typical home directory. If
this is your working directory and you give the command
lp memo, then the system looks for the file memo in
/home/cam. If you have a directory called hatter in your
home directory, and it contains the file teatime, then you
can print it with the command lp hatter/teatime.

53

Tilde notation

As you can well imagine, home directories occur often in
pathnames. Although many systems are organized so that
all home directories have a common parent (such as
/home or /users), you should not rely on that being the
case, nor should you even have to know the absolute
pathname of someone's home directory.

Therefore, bash has a way of abbreviating home
directories: just precede the name of the user with a tilde
(~). For example, you could refer to the file story in user
alice's home directory as ~alice/story. This is an absolute
pathname, so it doesn't matter what your working
directory is when you use it. If alice's home directory has
a subdirectory called adventure and the file is in there
instead, you can use ~alice/adventure/story as its name.

Even more convenient, a tilde by itself refers to your own
home directory. You can refer to a file called notes in
your home directory as ~/notes (note the difference
between that and ~notes, which the shell would try to
interpret as user notes's home directory). If notes is in
your adventure subdirectory, then you can call it
~/adventure/notes. This notation is handiest when your
working directory is not in your home directory tree, e.g.,
when it's some system directory like /tmp.

54

Changing working directories

If you want to change your working directory, use the
command cd. If you don't remember your working
directory, the command pwd tells the shell to print it.

cd takes as an argument the name of the directory you
want to become your working directory. It can be relative
to your current directory, it can contain a tilde, or it can
be absolute (starting with a slash). If you omit the
argument, cd changes to your home directory (i.e., it's the
same as cd ~).

Table 1-1 gives some sample cd commands. Each
command assumes that your working directory is /home/
cam just before the command is executed, and that your
directory structure looks like Figure 1-1.

Table 1-1. Sample cd commands

Command New working directory

cd book /home/cam/book

cd book/wonderland /home/cam/book/wonderland

55

Command New working directory

cd ~/book/wonderland /home/cam/book/wonderland

cd /usr/lib /usr/lib

cd .. /home

cd ../gryphon /home/gryphon

cd ~gryphon /home/gryphon

The first four are straightforward. The next two use a
special directory called .. (two dots), which means "parent
of this directory." Every directory has one of these; it's a
universal way to get to the directory above the current
one in the hierarchy—which is called the parent
directory.[7]

Another feature of bash's cd command is the form cd -,
which changes to whatever directory you were in before
the current one. For example, if you start out in /usr/lib,

56

type cd without an argument to go to your home
directory, and then type cd -, you will be back in /usr/lib.

57

Filenames, Wildcards, and
Pathname Expansion

Sometimes you need to run a command on more than one
file at a time. The most common example of such a
command is ls, which lists information about files. In its
simplest form, without options or arguments, it lists the
names of all files in the working directory except special
hidden files, whose names begin with a dot (.).

If you give ls filename arguments, it will list those
files—which is sort of silly: if your current directory has
the files duchess and queen in it and you type ls duchess
queen, the system will simply print those filenames.

Actually, ls is more often used with options that tell it to
list information about the files, like the -l (long) option,
which tells ls to list the file's owner, size, time of last
modification, and other information, or -a (all), which
also lists the hidden files described above. But sometimes
you want to verify the existence of a certain group of files
without having to know all of their names; for example, if
you use a text editor, you might want to see which files in
your current directory have names that end in .txt.

Filenames are so important in UNIX that the shell
provides a built-in way to specify the pattern of a set of

58

filenames without having to know all of the names
themselves. You can use special characters, called
wildcards, in filenames to turn them into patterns. Table
1-2 lists the basic wildcards.

Table 1-2. Basic wildcards

Wildcard Matches

? Any single character

* Any string of characters

[set] Any character in set

[! set] Any character not in set

The ? wildcard matches any single character, so that if
your directory contains the files program.c, program.log,
and program.o, then the expression program.? matches
program.c and program.o but not program.log.

The asterisk (*) is more powerful and far more widely
used; it matches any string of characters. The expression
program.* will match all three files in the previous

59

paragraph; text editor users can use the expression *.txt
to match their input files.[8]

Table 1-3 should help demonstrate how the asterisk
works. Assume that you have the files bob, darlene, dave,
ed, frank, and fred in your working directory.

Table 1-3. Using the * wildcard

Expression Yields

fr* frank fred

*ed ed fred

b* bob

e darlene dave ed fred

r darlene frank fred

* bob darlene dave ed frank fred

60

Expression Yields

d*e darlene dave

g* g*

Notice that * can stand for nothing: both *ed and *e*
match ed. Also notice that the last example shows what
the shell does if it can't match anything: it just leaves the
string with the wildcard untouched.

The remaining wildcard is the set construct. A set is a list
of characters (e.g., abc), an inclusive range (e.g., a-z), or
some combination of the two. If you want the dash
character to be part of a list, just list it first or last. Table
1-4 should explain things more clearly.

Table 1-4. Using the set construct wildcards

Expression Matches

[abc] a, b, or c

61

Expression Matches

[.,;] Period, comma, or semicolon

[-_] Dash or underscore

[a-c] a, b, or c

[a-z] All lowercase letters

[!0-9] All non-digits

[0-9!] All digits and exclamation point

[a-zA-Z] All lower- and uppercase letters

[a-zA-Z0-9_-] All letters, all digits, underscore, and
dash

62

In the original wildcard example, program.[co] and
program.[a-z] both match program.c and program.o, but
not program.log.

An exclamation point after the left bracket lets you
"negate" a set. For example, [!.;] matches any character
except period and semicolon; [!a-zA-Z] matches any
character that isn't a letter. To match ! itself, place it after
the first character in the set, or precede it with a
backslash, as in [\!].

The range notation is handy, but you shouldn't make too
many assumptions about what characters are included in a
range. It's safe to use a range for uppercase letters,
lowercase letters, digits, or any subranges thereof (e.g.,
[f-q], [2-6]). Don't use ranges on punctuation characters
or mixed-case letters: e.g., [a-Z] and [A-z] should not be
trusted to include all of the letters and nothing more. The
problem is that such ranges are not entirely portable
between different types of computers.[9]

The process of matching expressions containing
wildcards to filenames is called wildcard expansion or
globbing. This is just one of several steps the shell takes
when reading and processing a command line; another
that we have already seen is tilde expansion, where tildes
are replaced with home directories where applicable.
We'll see others in later chapters, and the full details of
the process are enumerated in Chapter 7.

63

However, it's important to be aware that the commands
that you run only see the results of wildcard expansion.
That is, they just see a list of arguments, and they have no
knowledge of how those arguments came into being. For
example, if you type ls fr* and your files are as on the
previous page, then the shell expands the command line
to ls fred frank and invokes the command ls with
arguments fred and frank. If you type ls g*, then
(because there is no match) ls will be given the literal
string g* and will complain with the error message, g*:
No such file or directory.[10]

Here is an example that should help make things clearer.
Suppose you are a C programmer. This means that you
deal with files whose names end in .c (programs, also
known as source files), .h (header files for programs), and
.o (object code files that aren't human-readable), as well
as other files. Let's say you want to list all source, object,
and header files in your working directory. The command
ls *.[cho] does the trick. The shell expands *.[cho] to all
files whose names end in a period followed by a c, h, or o
and passes the resulting list to ls as arguments. In other
words, ls will see the filenames just as if they were all
typed in individually—but notice that we required no
knowledge of the actual filenames whatsoever! We let the
wildcards do the work.

The wildcard examples that we have seen so far are
actually part of a more general concept called pathname
expansion. Just as it is possible to use wildcards in the
current directory, they can also be used as part of a

64

pathname. For example, if you wanted to list all of the
files in the directories /usr and /usr2, you could type ls
/usr*. If you were only interested in the files beginning
with the letters b and e in these directories, you could
type ls /usr*/[be]* to list them.

65

Brace Expansion

A concept closely related to pathname expansion is brace
expansion. Whereas pathname expansion wildcards will
expand to files and directories that exist, brace expansion
expands to an arbitrary string of a given form: an optional
preamble, followed by comma-separated strings between
braces, and followed by an optional postscript. If you
type echo b{ed,olt,ar}s, you'll see the words beds, bolts,
and bars printed. Each instance of a string inside the
braces is combined with the preamble b and the postscript
s. Notice that these are not filenames—the strings
produced are independent of filenames. It is also possible
to nest the braces, as in b{ar{d,n,k},ed}s. This will result
in the expansion bards, barns, barks, and beds.

You can also use a slightly different type of brace
expansion for creating a sequence of letters or numbers. If
you type echo {2..5} you'll see this expands to 2 3 4 5.
Typing echo {d..h} results in the expansion d e f g h.[11]

Brace expansion can also be used with wildcard
expansions. In the example from the previous section
where we listed the source, object, and header files in the
working directory, we could have used ls *.{c,h,o}.[12]

66

[6] Most UNIX tutorials say that root has the name /. We
stand by this alternative explanation because it is more
logically consistent with the rest of the UNIX filename
conventions.

[7] Each directory also has the special directory . (single
dot), which just means "this directory." Thus, cd .
effectively does nothing. Both . and .. are actually special
hidden files in each directory that point to the directory
itself and to its parent directory, respectively. root is its
own parent.

[8] MS-DOS and VAX/VMS users should note that there
is nothing special about the dot (.) in UNIX filenames
(aside from the leading dot, which "hides" the file); it's
just another character. For example, ls * lists all files in
the current directory; you don't need *.* as you do on
other systems. Indeed, ls *.* won't list all the files—only
those that have at least one dot in the middle of the name.

[9] Specifically, ranges depend on the character encoding
scheme your computer uses (normally ASCII, but IBM
mainframes use EBCDIC) and the character set used by
the current locale (ranges in languages other than English
may not give expected results).

[10] This is different from the C shell's wildcard
mechanism, which prints an error message and doesn't
execute the command at all.

67

[11] This form of brace expansion is not available in bash
prior to Version 3.0.

[12] This differs slightly from C shell brace expansion.
bash requires at least one unquoted comma to perform an
expansion; otherwise, the word is left unchanged, e.g.,
b{o}lt remains as b{o}lt.

68

Input and Output
The software field—really, any scientific field—tends to
advance most quickly and impressively on those few
occasions when someone (i.e., not a committee) comes up
with an idea that is small in concept yet enormous in its
implications. The standard input and output scheme of
UNIX has to be on the short list of such ideas, along with
such classic innovations as the LISP language, the
relational data model, and object-oriented programming.

The UNIX I/O scheme is based on two dazzlingly simple
ideas. First, UNIX file I/O takes the form of arbitrarily
long sequences of characters (bytes). In contrast, file
systems of older vintage have more complicated I/O
schemes (e.g., "block," "record," "card image," etc.).
Second, everything on the system that produces or
accepts data is treated as a file; this includes hardware
devices like disk drives and terminals. Older systems
treated every device differently. Both of these ideas have
made systems programmers' lives much more pleasant.

Standard I/O

By convention, each UNIX program has a single way of
accepting input called standard input, a single way of
producing output called standard output, and a single

69

way of producing error messages called standard error
output, usually shortened to standard error. Of course, a
program can have other input and output sources as well,
as we will see in Chapter 7.

Standard I/O was the first scheme of its kind that was
designed specifically for interactive users at terminals,
rather than the older batch style of use that usually
involved decks of punch-cards. Since the UNIX shell
provides the user interface, it should come as no surprise
that standard I/O was designed to fit in very neatly with
the shell.

All shells handle standard I/O in basically the same way.
Each program that you invoke has all three standard I/O
channels set to your terminal or workstation, so that
standard input is your keyboard, and standard output and
error are your screen or window. For example, the mail
utility prints messages to you on the standard output, and
when you use it to send messages to other users, it
accepts your input on the standard input. This means that
you view messages on your screen and type new ones in
on your keyboard.

When necessary, you can redirect input and output to
come from or go to a file instead. If you want to send the
contents of a pre-existing file to someone as mail, you
redirect mail's standard input so that it reads from that file
instead of your keyboard.

70

You can also hook programs together in a pipeline, in
which the standard output of one program feeds directly
into the standard input of another; for example, you could
feed mail output directly to the lp program so that
messages are printed instead of shown on the screen.

This makes it possible to use UNIX utilities as building
blocks for bigger programs. Many UNIX utility programs
are meant to be used in this way: they each perform a
specific type of filtering operation on input text. Although
this isn't a textbook on UNIX utilities, they are essential
to productive shell use. The more popular filtering
utilities are listed in Table 1-5.

Table 1-5. Popular UNIX data filtering utilities

Utility Purpose

cat Copy input to output

grep Search for strings in the input

sort Sort lines in the input

cut Extract columns from input

71

Utility Purpose

sed Perform editing operations on input

tr Translate characters in the input to other
characters

You may have used some of these before and noticed that
they take names of input files as arguments and produce
output on standard output. You may not know, however,
that all of them (and most other UNIX utilities) accept
input from standard input if you omit the argument.[13]

For example, the most basic utility is cat, which simply
copies its input to its output. If you type cat with a
filename argument, it will print out the contents of that
file on your screen. But if you invoke it with no
arguments, it will expect standard input and copy it to
standard output. Try it: cat will wait for you to type a line
of text; when you type RETURN, cat will repeat the text
back to you. To stop the process, hit CTRL-D at the
beginning of a line. You will see ^D when you type
CTRL-D. Here's what this should look like:

$ cat
Here is a line of text.

Here is a line of text.

72

This is another line of text.
This is another line of text.
^D
$

73

I/O Redirection

cat is short for "catenate," i.e., link together. It accepts
multiple filename arguments and copies them to the
standard output. But let's pretend, for now, that cat and
other utilities don't accept filename arguments and accept
only standard input. As we said above, the shell lets you
redirect standard input so that it comes from a file. The
notation command < filename does this; it sets things up
so that command takes standard input from a file instead
of from a terminal.

For example, if you have a file called cheshire that
contains some text, then cat < cheshire will print
cheshire's contents out onto your terminal. sort <
cheshire will sort the lines in the cheshire file and print
the result on your terminal (remember: we're pretending
that these utilities don't take filename arguments).

Similarly, command > filename causes the command's
standard output to be redirected to the named file. The
classic "canonical" example of this is date > now: the
date command prints the current date and time on the
standard output; the previous command saves it in a file
called now.

Input and output redirectors can be combined. For
example: the cp command is normally used to copy files;

74

if for some reason it didn't exist or was broken, you could
use cat in this way:

$ cat <
file1
>
file2

This would be similar to cp file1 file2.

75

Pipelines

It is also possible to redirect the output of a command
into the standard input of another command instead of a
file. The construct that does this is called the pipe, notated
as |. A command line that includes two or more
commands connected with pipes is called a pipeline.

Pipes are very often used with the more command, which
works just like cat except that it prints its output screen
by screen, pausing for the user to type SPACE (next
screen), RETURN (next line), or other commands. If
you're in a directory with a large number of files and you
want to see details about them, ls -l | more will give you a
detailed listing a screen at a time.

Pipelines can get very complex, and they can also be
combined with other I/O directors. To see a sorted listing
of the file cheshire a screen at a time, type sort <
cheshire | more. To print it instead of viewing it on your
terminal, type sort < cheshire | lp.

Here's a more complicated example. The file /etc/passwd
stores information about users' accounts on a UNIX
system. Each line in the file contains a user's login name,
user ID number, encrypted password, home directory,
login shell, and other information. The first field of each

76

line is the login name; fields are separated by colons (:).
A sample line might look like this:

cam:LM1c7GhNesD4GhF3iEHrH4FeCKB/:501:100:Cameron Newham:/home/cam:/bin/bash

To get a sorted listing of all users on the system, type:

$ cut -d: -f1 < /etc/passwd | sort
(Actually, you can omit the <, since cut accepts input
filename arguments.) The cut command extracts the first
field (-f1), where fields are separated by colons (-d:),
from the input. The entire pipeline will print a list that
looks like this:

adm
bin
cam
daemon
davidqc
ftp
games
gonzo
...

If you want to send the list directly to the printer (instead
of your screen), you can extend the pipeline like this:

$ cut -d: -f1 < /etc/passwd | sort | lp
Now you should see how I/O directors and pipelines
support the UNIX building block philosophy. The
notation is extremely terse and powerful. Just as
important, the pipe concept eliminates the need for messy

77

temporary files to store command output before it is fed
into other commands.

For example, to do the same sort of thing as the above
command line on other operating systems (assuming that
equivalent utilities are available...), you need three
commands. On DEC's VAX/VMS system, they might
look like this:

$ cut [etc]passwd /d=":" /f=1 /out=temp1
$ sort temp1 /out=temp2
$ print temp2
$ delete temp1 temp2

After sufficient practice, you will find yourself routinely
typing in powerful command pipelines that do in one line
what it would take several commands (and temporary
files) in other operating systems to accomplish.

[13] If a particular UNIX utility doesn't accept standard
input when you leave out the filename argument, try
using a dash (-) as the argument. Some UNIX systems
provide standard input as a file, so you could try
providing the file /dev/stdin as the input file argument.

78

Background Jobs
Pipes are actually a special case of a more general
feature: doing more than one thing at a time. This is a
capability that many other commercial operating systems
don't have, because of the rigid limits that they tend to
impose upon users. UNIX, on the other hand, was
developed in a research lab and meant for internal use, so
it does relatively little to impose limits on the resources
available to users on a computer—as usual, leaning
towards uncluttered simplicity rather than
overcomplexity.

"Doing more than one thing at a time" means running
more than one program at the same time. You do this
when you invoke a pipeline; you can also do it by logging
on to a UNIX system as many times simultaneously as
you wish. (If you try that on an IBM's VM/CMS system,
for example, you will get an obnoxious "already logged
in" message.)

The shell also lets you run more than one command at a
time during a single login session. Normally, when you
type a command and hit RETURN, the shell will let the
command have control of your terminal until it is done;
you can't type in further commands until the first one is
done. But if you want to run a command that does not
require user input and you want to do other things while

79

the command is running, put an ampersand (&) after the
command.

This is called running the command in the background,
and a command that runs in this way is called a
background job; by contrast, a job run the normal way is
called a foreground job. When you start a background
job, you get your shell prompt back immediately,
enabling you to enter other commands.

The most obvious use for background jobs is programs
that take a long time to run, such as sort or uncompress
on large files. For example, assume you just got an
enormous compressed file loaded into your directory
from magnetic tape.[14] Let's say the file is gcc.tar.Z,
which is a compressed archive file that contains well over
10 MB of source code files.

Type uncompress gcc.tar & (you can omit the .Z), and
the system will start a job in the background that
uncompresses the data "in place" and ends up with the
file gcc.tar. Right after you type the command, you will
see a line like this:

[1] 175

followed by your shell prompt, meaning that you can
enter other commands. Those numbers give you ways of
referring to your background job; Chapter 8 explains
them in detail.

80

You can check on background jobs with the command
jobs. For each background job, jobs prints a line similar
to the above but with an indication of the job's status:

[1]+ Running uncompress gcc.tar &

When the job finishes, you will see a message like this
right before your shell prompt:

[1]+ Done uncompress gcc.tar

The message changes if your background job terminated
with an error; again, see Chapter 8 for details.

Background I/O

Jobs you put in the background should not do I/O to your
terminal. Just think about it for a moment and you'll
understand why.

By definition, a background job doesn't have control over
your terminal. Among other things, this means that only
the foreground process (or, if none, the shell itself) is
"listening" for input from your keyboard. If a background
job needs keyboard input, it will often just sit there doing
nothing until you do something about it (as described in
Chapter 8).

If a background job produces screen output, the output
will just appear on your screen. If you are running a job
in the foreground that produces output too, then the

81

output from the two jobs will be randomly (and often
annoyingly) interspersed.

If you want to run a job in the background that expects
standard input or produces standard output, you usually
want to redirect the I/O so that it comes from or goes to a
file. Programs that produce small, one-line messages
(warnings, "done" messages, etc.) are an exception to this
general rule; you may not mind if these are interspersed
with whatever other output you are seeing at a given time.

For example, the diff utility examines two files, whose
names are given as arguments, and prints a summary of
their differences on the standard output. If the files are
exactly the same, diff is silent. Usually, you invoke diff
expecting to see a few lines that are different.

diff, like sort and compress, can take a long time to run if
the input files are very large. Suppose that you have two
large files that are called warandpeace.txt and
warandpeace.txt.old. The command diff
warandpeace.txt warandpeace.txt.old [15] reveals that
the author decided to change the name "Ivan" to
"Aleksandr" throughout the entire file—i.e., hundreds of
differences, resulting in very large amounts of output.

If you type diff warandpeace.txt warandpeace.txt.old
&, then the system will spew lots and lots of output at
you, which will be difficult to stop—even with the
techniques explained in Chapter 7. However, if you type:

$ diff warandpeace.txt warandpeace.txt.old > txtdiff &

82

then the differences will be saved in the file txtdiff for you
to examine later.

83

Background Jobs and
Priorities

Background jobs can save you a lot of thumb-twiddling
time. Just remember that such jobs eat up lots of system
resources like memory and the processor (CPU). Just
because you're running several jobs at once doesn't mean
that they will run faster than they would if run
sequentially—in fact, performance is usually slightly
worse.

Every job on the system is assigned a priority, a number
that tells the operating system how much priority to give
the job when it doles out resources (the higher the
number, the lower the priority). Commands that you enter
from the shell, whether foreground or background jobs,
usually have the same priority. The system administrator
is able to run commands at a higher priority than normal
users.

Note that if you're on a multiuser system, running lots of
background jobs may eat up more than your fair share of
resources, and you should consider whether having your
job run as fast as possible is really more important than
being a good citizen.

84

Speaking of good citizenship, there is also a UNIX
command that lets you lower the priority of any job: the
aptly named nice. If you type nice command, where
command can be a complex shell command line with
pipes, redirectors, etc., then the command will run at a
lower priority.[16] You can control just how much lower
by giving nice a numerical argument; consult the nice
manpage for details.[17]

[14] Compressed files are created by the compress utility,
which packs files into smaller amounts of space; they
have names of the form filename.Z, where filename is the
name of the original uncompressed file.

[15] You could use diff warandpeace* as a shorthand to
save typing—as long as there are no other files with
names of that form. Remember that diff doesn't see the
arguments until after the shell has expanded the
wildcards. Many people overlook this use of wildcards.

[16] Complex commands following nice should be quoted.

[17] If you are a system administrator logged in as root,
then you can also use nice to raise a job's priority.

85

Special Characters and
Quoting
The characters <, >, |, and & are four examples of special
characters that have particular meanings to the shell. The
wildcards we saw earlier in this chapter (*, ?, and [...])
are also special characters.

Table 1-6 gives the meanings of all special characters
within shell command lines only. Other characters have
special meanings in specific situations, such as the
regular expressions and string-handling operators that
we'll see in Chapter 3 and Chapter 4.

Table 1-6. Special characters

Character Meaning See
chapter

~ Home directory Chapter 1

` Command substitution
(archaic) Chapter 4

86

Character Meaning See
chapter

Comment Chapter 4

$ Variable expression Chapter 3

& Background job Chapter 1

* String wildcard Chapter 1

(Start subshell Chapter 8

) End subshell Chapter 8

\ Quote next character Chapter 1

| Pipe Chapter 1

[Start character-set wildcard Chapter 1

87

Character Meaning See
chapter

] End character-set wildcard Chapter 1

{ Start command block Chapter 7

} End command block Chapter 7

; Shell command separator Chapter 3

` Strong quote Chapter 1

<"> Weak quote Chapter 1

< Input redirect Chapter 1

> Output redirect Chapter 1

/ Pathname directory separator Chapter 1

88

Character Meaning See
chapter

? Single-character wildcard Chapter 1

! Pipeline logical NOT Chapter 5

Quoting

Sometimes you will want to use special characters
literally, i.e., without their special meanings. This is
called quoting. If you surround a string of characters with
single quotation marks (or quotes), you strip all
characters within the quotes of any special meaning they
might have.

The most obvious situation where you might need to
quote a string is with the echo command, which just takes
its arguments and prints them to the standard output.
What is the point of this? As you will see in later
chapters, the shell does quite a bit of processing on
command lines—most of which involves some of the
special characters listed in Table 1-6. echo is a way of
making the result of that processing available on the
standard output.

89

What if we want to print the string 2 * 3 > 5 is a valid
inequality? Suppose you type this:

$ echo 2 * 3 > 5 is a valid inequality.
You would get your shell prompt back, as if nothing
happened! But then there would be a new file, with the
name 5, containing "2", the names of all files in your
current directory, and then the string 3 is a valid
inequality. Make sure you understand why.[18]

However, if you type:

$ echo '2 * 3 > 5 is a valid inequality.'
the result is the string, taken literally. You needn't quote
the entire line, just the portion containing special
characters (or characters you think might be special, if
you just want to be sure):

$ echo '2 * 3 > 5' is a valid inequality.
This has exactly the same result.

Notice that Table 1-6 lists double quotes (") as weak
quotes. A string in double quotes is subjected to some of
the steps the shell takes to process command lines, but
not all. (In other words, it treats only some special
characters as special.) You'll see in later chapters why
double quotes are sometimes preferable; Chapter 7
contains the most comprehensive explanation of the
shell's rules for quoting and other aspects of

90

command-line processing. For now, though, you should
stick to single quotes.

91

Backslash-Escaping

Another way to change the meaning of a character is to
precede it with a backslash (\). This is called
backslash-escaping the character. In most cases, when
you backslash-escape a character, you quote it. For
example:

$ echo 2 * 3 \> 5 is a valid inequality.
will produce the same results as if you surrounded the
string with single quotes. To use a literal backslash, just
surround it with quotes ('\') or, even better,
backslash-escape it (\\).

Here is a more practical example of quoting special
characters. A few UNIX commands take arguments that
often include wildcard characters, which need to be
escaped so the shell doesn't process them first. The most
common such command is find, which searches for files
throughout entire directory trees.

To use find, you supply the root of the tree you want to
search and arguments that describe the characteristics of
the file(s) you want to find. For example, the command
find . -name string searches the directory tree whose root
is your current directory for files whose names match the
string. (Other arguments allow you to search by the file's
size, owner, permissions, date of last access, etc.)

92

You can use wildcards in the string, but you must quote
them, so that the find command itself can match them
against names of files in each directory it searches. The
command find . -name `*.c' will match all files whose
names end in .c anywhere in your current directory,
subdirectories, sub-subdirectories, etc.

93

Quoting Quotation Marks

You can also use a backslash to include double quotes
within a quoted string. For example:

$ echo \"2 * 3 \> 5\" is a valid inequality.
produces the following output:

"2 * 3 > 5" is a valid inequality.

However, this won't work with single quotes inside
quoted expressions. For example, echo `Hatter\'s tea
party' will not give you Hatter's tea party. You can get
around this limitation in various ways. First, try
eliminating the quotes:

$ echo Hatter\'s tea party
If no other characters are special (as is the case here), this
works. Otherwise, you can use the following command:

$ echo 'Hatter'\''s tea party'
That is, `\'' (i.e., single quote, backslash, single quote,
single quote) acts like a single quote within a quoted
string. Why? The first ' in `\'' ends the quoted string we
started with (`Hatter), the \' inserts a literal single quote,
and the next ' starts another quoted string that ends with
the word "party". If you understand this, then you will

94

have no trouble resolving the other bewildering issues
that arise from the shell's often cryptic syntax.

95

Continuing Lines

A related issue is how to continue the text of a command
beyond a single line on your terminal or workstation
window. The answer is conceptually simple: just quote
the RETURN key. After all, RETURN is really just
another character.

You can do this in two ways: by ending a line with a
backslash, or by not closing a quote mark (i.e., by
including RETURN in a quoted string). If you use the
backslash, there must be nothing between it and the end
of the line—not even spaces or TABs.

Whether you use a backslash or a single quote, you are
telling the shell to ignore the special meaning of the
RETURN character. After you press RETURN, the shell
understands that you haven't finished your command line
(i.e., since you haven't typed a "real" RETURN), so it
responds with a secondary prompt, which is > by default,
and waits for you to finish the line. You can continue a
line as many times as you wish.

For example, if you want the shell to print the first
sentence of of Lewis Carroll's Alice's Adventures in
Wonderland, you can type this:

96

$ echo The Caterpillar and Alice looked at each other for some \
> time in silence: at last Caterpillar took the hookah out of its \
> mouth, and addressed her in a languid, sleepy voice.

Or you can do it this way:

$ echo 'The Caterpillar and Alice looked at each other for some
> time in silence: at last Caterpillar took the hookah out of its
> mouth, and addressed her in a languid, sleepy voice.'

97

Control Keys

Control keys—those that you type by holding down the
CONTROL (or CTRL) key and hitting another key—are
another type of special character. These normally don't
print anything on your screen, but the operating system
interprets a few of them as special commands. You
already know one of them: RETURN is actually the same
as CTRL-M (try it and see). You have probably also used
the BACKSPACE or DEL key to erase typos on your
command line.

Actually, many control keys have functions that don't
really concern you—yet you should know about them for
future reference and in case you type them by accident.

Perhaps the most difficult thing about control keys is that
they can differ from system to system. The usual
arrangement is shown in Table 1-7, which lists the control
keys that all major modern versions of UNIX support.
Note that DEL and CTRL-? are the same character.

You can use the stty command to find out what your
settings are and change them if you wish; see Chapter 8
for details. If the version of UNIX on your system is one
of those that derive from BSD (such as SunOS and OS
X), type stty all to see your control-key settings; you will
see something like this:

98

erase kill werase rprnt flush lnext susp intr quit stop eof
^? ^U ^W ^R ^O ^V ^Z/^Y ^C ^\ ^S/^Q ^D

Table 1-7. Control keys

Control
key

stty
name Function description

CTRL-C intr Stop current command

CTRL-D eof End of input

CTRL-\ quit Stop current command if
CTRL-C doesn't work

CTRL-S stop Halt output to screen

CTRL-Q Restart output to screen

DEL or
CTRL-? erase Erase last character

99

Control
key

stty
name Function description

CTRL-U kill Erase entire command line

CTRL-Z susp Suspend current command (see
Chapter 8)

The ^X notation stands for CTRL-X. If your UNIX
version derives from System III or System V (this
includes AIX, HP/UX, SCO, Linux, and Xenix), type stty
-a.

The resulting output will include this information:

intr = ^c; quit = ^|; erase = DEL; kill = ^u; eof = ^d; eol = ^`;
swtch = ^`; susp = ^z; dsusp <undef>;

The control key you will probably use most often is
CTRL-C, sometimes called the interrupt key. This
stops—or tries to stop—the command that is currently
running. You will want to use this when you enter a
command and find that it's taking too long, you gave it
the wrong arguments, you change your mind about
wanting to run it, or whatever.

100

Sometimes CTRL-C doesn't work; in that case, if you
really want to stop a job, try CTRL-\. But don't just type
CTRL-\; always try CTRL-C first! Chapter 8 explains
why in detail. For now, suffice it to say that CTRL-C
gives the running job more of a chance to clean up before
exiting, so that files and other resources are not left in
funny states.

We've already seen an example of CTRL-D. When you
are running a command that accepts standard input from
your keyboard, CTRL-D tells the process that your input
is finished—as if the process were reading a file and it
reached the end of the file. mail is a utility in which this
happens often. When you are typing in a message, you
end by typing CTRL-D. This tells mail that your message
is complete and ready to be sent. Most utilities that accept
standard input understand CTRL-D as the end-of-input
character, though many such programs accept commands
like q, quit, exit, etc.

CTRL-S and CTRL-Q are called flow-control characters.
They represent an antiquated way of stopping and
restarting the flow of output from one device to another
(e.g., from the computer to your terminal) that was useful
when the speed of such output was low. They are rather
obsolete in these days of high-speed networks. In fact,
under the latter conditions, CTRL-S and CTRL-Q are
basically a nuisance. The only thing you really need to
know about them is that if your screen output becomes
"stuck," then you may have hit CTRL-S by accident.

101

Type CTRL-Q to restart the output; any keys you may
have hit in between will then take effect.

The final group of control characters gives you
rudimentary ways to edit your command line. DEL acts
as a backspace key (in fact, some systems use the actual
BACKSPACE or CTRL-H key as "erase" instead of
DEL); CTRL-U erases the entire line and lets you start
over. Again, these have been superseded.[19] The next
chapter will look at bash's editing modes, which are
among its most useful features and far more powerful
than the limited editing capabilities described here.

[18] This should also teach you something about the
flexibility of placing I/O redirectors anywhere on the
command line—even in places where they don't seem to
make sense.

[19] Why are so many outmoded control keys still in use?
They have nothing to do with the shell per se; instead,
they are recognized by the tty driver, an old and hoary
part of the operating system's lower depths that controls
input and output to/from your terminal.

102

Help
A feature in bash that no other shell has is an online help
system. The help command gives information on
commands in bash. If you type help by itself, you'll get a
list of the built-in shell commands along with their
options.

If you provide help with a shell command name it will
give you a detailed description of the command:

$ help cd
cd: cd [-L | -P] [dir]
Change the current directory to DIR. The variable $HOME is the
default DIR. The variable $CDPATH defines the search path for
the directory containing DIR. Alternative directory names in
CDPATH are separated by a colon (:). A null directory name is
the same as the current directory, i.e. `.'. If DIR begins with
a slash (/), then $CDPATH is not used. If the directory is not
found, and the shell option `cdable_vars' is set, then try the
word as a variable name. If that variable has a value, then cd
to the value of that variable. The -P option says to use the
physical directory structure instead of following symbolic links;
the -L option forces symbolic links to be followed.

You can also provide help with a partial name, in which
case it will return details on all commands matching the
partial name. For example, help re will provide details on
read, readonly, and return. The partial name can also
include wildcards. You'll need to quote the name to
ensure that the wildcard is not expanded to a filename. So

103

the last example is equivalent to help `re*', and help
`re??' will only return details on read.

Sometimes help will show more than a screenful of
information and it will scroll the screen. You can use the
more command to show one screenful at a time by typing
help command | more.

104

Chapter 2. Command-Line
Editing
It's always possible to make mistakes when you type at a
computer keyboard, but perhaps even more so when you
are using a UNIX shell. UNIX shell syntax is powerful,
yet terse, full of odd characters, and not particularly
mnemonic, making it possible to construct command
lines that are as cryptic as they are complex. The Bourne
and C shells exacerbate this situation by giving you
extremely limited ways of editing your command lines.

In particular, there is no way to recall a previous
command line so that you can fix a mistake. If you are an
experienced Bourne shell user, undoubtedly you know the
frustration of having to retype long command lines. You
can use the BACKSPACE key to edit, but once you hit
RETURN, it's gone forever!

The C shell provided a small improvement via its history
mechanism, which provides a few very awkward ways of
editing previous commands. But there are more than a
few people who have wondered, "Why can't I edit my
UNIX command lines in the same way I can edit text
with an editor?"

This is exactly what bash allows you to do. It has editing
modes that allow you to edit command lines with editing

105

commands similar to those of the two most popular
UNIX editors, vi and emacs. It also provides a
much-extended analog to the C shell history mechanism
called fc (for fix command) that, among other things,
allows you to use your favorite editor directly for editing
your command lines. To round things out, bash also
provides the original C shell history mechanism.

In this chapter, we will discuss the features that are
common to all of bash's command-history facilities; after
that, we will deal with each facility in detail. If you use
either vi or emacs, you may wish to read the section on
the emulation mode for only the one you use.[1] If you
use neither vi nor emacs, but are interested in learning
one of the editing modes anyway, we suggest
emacs-mode, because it is more of a natural extension of
the minimal editing capability you get with the bare shell.

We should mention up front that both emacs- and
vi-modes introduce the potential for clashes with control
keys set up by the UNIX terminal interface. Recall the
control keys shown in Chapter 1 in Table 1-7, and the
sample stty command output. The control keys shown
there override their functions in the editing modes.

During the rest of this chapter, we'll warn you when an
editing command clashes with the default setting of a
terminal-interface control key.

106

Enabling
Command-Line Editing
bash initially starts interactively with emacs-mode as the
default (unless you have started bash with the -noediting
option;[2] see Chapter 10). There are two ways to enter
either editing mode while in the shell. First, you can use
the set command:

$ set -o emacs
or:

$ set -o vi
The second way of selecting the editing mode is to set a
readline variable in the file .inputrc. We will look at this
method later in this chapter.

You will find that the vi- and emacs-editing modes are
good at emulating the basic commands of these editors,
but not their advanced features; their main purpose is to
let you transfer "keyboard habits" from your favorite
editor to the shell. fc is quite a powerful facility; it is
mainly meant to supplant C shell history and as an
"escape hatch" for users of editors other than vi or emacs.
Therefore the section on fc is mainly recommended to C
shell users and those who don't use either standard editor.

107

[1] You will get the most out of these sections if you are
already familiar with the editor(s) in question. Good
sources for more complete information on the editors are
the O'Reilly books Learning the vi Editor, by Linda Lamb
and Arnold Robbins, and Learning GNU Emacs, by
Debra Cameron, James Elliott, and Marc Loy.

[2] -nolineediting in versions of bash prior to 2.0.

108

The History List
All of bash's command history facilities depend on a list
that records commands as you type them into the shell.
Whenever you log in or start another interactive shell,
bash reads an initial history list from the file
.bash_history in your home directory. From that point on,
every bash interactive session maintains its own list of
commands. When you exit from a shell, it saves the list in
.bash_history. You can call this file whatever you like by
setting the environment variable HISTFILE. We'll look
more closely at HISTFILE and some other related
command history variables in the next chapter.

109

emacs Editing Mode
If you are an emacs user, you will find it most useful to
think of emacs editing mode as a simplified emacs with a
single, one-line window. All of the basic commands are
available for cursor motion, cut-and-paste, and search.

Basic Commands

emacs-mode uses control keys for the most basic editing
functions. If you aren't familiar with emacs, you can think
of these as extensions of the rudimentary "erase"
character (usually BACKSPACE or DEL) that UNIX
provides through its interface to users' terminals. For the
sake of consistency, we'll assume your erase character is
DEL from now on; if it is CTRL-H or something else,
you will need to make a mental substitution. The most
basic control-key commands are shown in Table 2-1.
(Important: remember that typing CTRL-D when your
command line is empty may log you off!) The basic
keyboard habits of emacs-mode are easy to learn, but they
do require that you assimilate a couple of concepts that
are peculiar to the emacs editor.

Table 2-1. Basic emacs-mode commands

110

Command Description

CTRL-B Move backward one character (without
deleting)

CTRL-F Move forward one character

DEL Delete one character backward

CTRL-D Delete one character forward

The first of these is the use of CTRL-B and CTRL-F for
backward and forward cursor motion. These keys have
the advantage of being obvious mnemonics. You can also
use the left and right cursor motion keys ("arrow" keys),
but for the rest of this discussion we will use the control
keys, as they work on all keyboards. In emacs-mode, the
point (sometimes also called dot) is an imaginary place
just to the left of the character the cursor is on. In the
command descriptions in Table 2-1, some say "forward"
while others say "backward." Think of forward as "to the
right of point" and backward as "to the left of point."

For example, let's say you type in a line and, instead of
typing RETURN, you type CTRL-B and hold it down so

111

that it repeats. The cursor will move to the left until it is
over the first character on the line, like this:

$ [f]grep -l Duchess < ~cam/book/alice_in_wonderland
Now the cursor is on the f, and point is at the beginning
of the line, just before the f. If you type DEL, nothing
will happen because there are no characters to the left of
point. However, if you press CTRL-D (the "delete
character forward" command) you will delete the first
letter:

$ [g]rep -l Duchess < ~cam/book/alice_in_wonderland
Point is still at the beginning of the line. If this were the
desired command, you could hit RETURN now and run
it; you don't need to move the cursor back to the end of
the line. However, you could type CTRL-F repeatedly to
get there:

$ grep -l Duchess < ~cam/book/alice_in_wonderland[]
At this point, typing CTRL-D wouldn't do anything, but
hitting DEL would erase the final d.

112

Word Commands

The basic commands are really all you need to get around
a command line, but a set of more advanced commands
lets you do it with fewer keystrokes. These commands
operate on words rather than single characters;
emacs-mode defines a word as a sequence of one or more
alphanumeric characters.

The word commands are shown in Table 2-2. The basic
commands are all single characters, whereas these consist
of two keystrokes, ESC followed by a letter. You will
notice that the command ESC X, where X is any letter,
often does for a word what CTRL-X does for a single
character. "Kill" is another word for "delete"; it is the
standard term used in the readline library documentation
for an "undoable" deletion.

Table 2-2. emacs-mode word commands

Command Description

ESC-B Move one word backward

113

Command Description

ESC-F Move one word forward

ESC-DEL Kill one word backward

ESC-CTRL-H Kill one word backward

ESC-D Kill one word forward

CTRL-Y Retrieve ("yank") last item killed

To return to our example: if we type ESC-B, point will
move back a word. Since the underscore (_) is not an
alphanumeric character, emacs-mode will stop there:

$ grep -l Duchess < ~cam/book/alice_in_[w]onderland
The cursor is on the w in wonderland, and point is
between the _ and the w. Now let's say we want to change
the -l option of this command from Duchess to Cheshire.
We need to move back on the command line, so we type
ESC-B four more times. This gets us here:

114

$ grep -l Duchess < ~[c]am/book/alice_in_wonderland
If we type ESC-B again, we end up at the beginning of
Duchess:

$ grep -l [D]uchess < ~cam/book/alice_in_wonderland
Why? Remember that a word is defined as a sequence of
alphanumeric characters only. Therefore < is not a word;
the next word in the backward direction is Duchess. We
are now in position to delete Duchess, so we type ESC-D
and get:

$ grep -l []< ~cam/book/alice_in_wonderland
Now we can type in the desired argument:

$ grep -l Cheshire[]< ~cam/book/alice_in_wonderland
If you want Duchess back again you can use the CTRL-Y
command. The CTRL-Y "yank" command will undelete a
word if the word was the last thing deleted. In this case,
CTRL-Y would insert Duchess at the point.

115

Line Commands

There are still more efficient ways of moving around a
command line in emacs-mode. A few commands deal
with the entire line; they are shown in Table 2-3.

Table 2-3. emacs-mode line commands

Command Description

CTRL-A Move to beginning of line

CTRL-E Move to end of line

CTRL-K Kill forward to end of line

Using CTRL-A, CTRL-E, and CTRL-K should be
straightforward. Remember that CTRL-Y will always
undelete the last thing deleted; if you use CTRL-K, that
could be quite a few characters.

116

Moving Around in the
History List

Now we know how to get around the command line
efficiently and make changes. But that doesn't address the
original issue of recalling previous commands by
accessing the history list. emacs-mode has several
commands for doing this, summarized in Table 2-4.

Table 2-4. emacs-mode commands for moving
through the history list

Command Description

CTRL-P Move to previous line

CTRL-N Move to next line

CTRL-R Search backward

ESC-< Move to first line of history list

117

Command Description

ESC-> Move to last line of history list

CTRL-P and CTRL-N move you through the command
history. If you have cursor motion keys (arrow keys) you
can use them instead. The up-arrow is the same as
CTRL-P and the down-arrow is the same as CTRL-N. For
the rest of this discussion, we'll stick to using the control
keys because they can be used on all keyboards.

CTRL-P is by far the one you will use most often—it's
the "I made a mistake, let me go back and fix it" key. You
can use it as many times as you wish to scroll back
through the history list. If you want to get back to the last
command you entered, you can hold down CTRL-N until
bash beeps at you, or just type ESC->. As an example,
you hit RETURN to run the command above, but you get
an error message telling you that your option letter was
incorrect. You want to change it without retyping the
whole thing.

First, you would type CTRL-P to recall the bad
command. You get it back with point at the end:

$ grep -l Duchess < ~cam/book/alice_in_wonderland[]

118

After CTRL-A, ESC-F, two CTRL-Fs, and CTRL-D, you
have:

$ grep -[]Duchess < ~cam/book/alice_in_wonderland
You decide to try -s instead of -l, so you type s and hit
RETURN. You get the same error message, so you give
up and look it up in the manual. You find out that the
command you want is fgrep—not grep—after all.

You sigh heavily and go back and find the fgrep
command you typed in an hour ago. To do this, you type
CTRL-R; whatever was on the line will disappear and be
replaced by (reverse-i-search)`':. Then type fgrep, and
you will see this:

$ (reverse-i-search)`fgrep': fgrep -l Duchess <~cam/book/ \
alice_in_wonderland[]

The shell dynamically searches back through the
command history each time you type a letter, looking for
the current substring in the previous commands. In this
example, when you typed f the shell would have printed
the most recent command in the history with that letter in
it. As you typed more letters, the shell narrowed the
search until you ended up with the line displayed above.
Of course, this may not have been the particular line you
wanted. Typing CTRL-R again makes the shell search
further back in the history list for a line with "fgrep" in it.
If the shell doesn't find the substring again, it will beep.

If you try the fgrep command by hitting RETURN, two
things will happen. First, of course, the command will

119

run. Second, this line will be entered into the history list
at the end, and your "current line" will be at the end as
well. You will no longer be somewhere else in the
command history.

Another handy trick to save typing if you have already
done a search is to type CTRL-R twice in a row. This
recalls the previous search string you typed in.[3]

CTRL-P, CTRL-N, and CTRL-R are clearly the most
important emacs-mode commands that deal with the
command history. The others are less useful but are
included for compatibility with the full emacs editor.

120

Textual Completion

One of the most powerful (and typically underused)
features of emacs-mode is its textual completion facility,
inspired by similar features in the full emacs editor, the C
shell, and (originally) the old DEC TOPS-20 operating
system.

The premise behind textual completion is simple: you
should have to type only as much of a filename, user
name, function, etc., to identify it unambiguously. This is
an excellent feature; there is an analogous one in
vi-mode. We recommend that you take the time to learn
it, since it will save you quite a bit of typing.

There are three commands in emacs-mode that relate to
textual completion. The most important is TAB.[4] When
you type in a word of text followed by TAB, bash will
attempt to complete the name. Then one of four things
can happen:

1. If there is nothing whose name begins with the
word, the shell will beep and nothing further will
happen.

2. If there is a command name in the search path, a
function name, or a filename that the string
uniquely matches, the shell will type the rest of

121

it, followed by a space in case you want to type
in more command arguments. Command name
completion is only attempted when the word is in
a command position (e.g., at the start of a line).

3. If there is a directory that the string uniquely
matches, the shell will complete the filename,
followed by a slash.

4. If there is more than one way to complete the
name, the shell will complete out to the longest
common prefix among the available choices.
Commands in the search path and functions take
precedence over filenames.

For example, assume you have a directory with the files
tweedledee.c and tweedledum.c. You want to compile the
first of these by typing cc tweedledee.c. You type cc
twee followed by TAB. This is not an unambiguous
prefix, since the prefix "twee" is common to both
filenames, so the shell only completes out to cc tweedled.
You need to type more letters to distinguish between
them, so you type e and hit TAB again. Then the shell
completes out to "cc tweedledee.c", leaving the extra
space for you to type in other filenames or options.

If you didn't know what options were available after
trying to complete cc twee, you could press TAB again.
bash prints out the possible completions for you and
presents your input line again:

122

$ cc tweedled
tweedledee.c tweedledum.c
$ cc tweedled

A related command is ESC-?, which expands the prefix
to all possible choices, listing them to standard output. Be
aware that the completion mechanism doesn't necessarily
expand to a filename. If there are functions and
commands that satisfy the string you provide, the shell
expands those first and ignores any files in the current
directory. As we'll see, you can force completion to a
particular type.

It is also possible to complete other environment entities.
If the text being completed is preceded by a dollar sign
($), the shell attempts to expand the name to that of a
shell variable (see Chapter 3, for a discussion of shell
variables). If the text is preceded by a tilde (~),
completion to a username is attempted; if preceded by an
at sign (@), a hostname is attempted.

For example, suppose there was a username cameron on
the system. If you wanted to change to this user's home
directory, you could just use tilde notation and type the
first few letters of the name, followed by a TAB:

$ cd ~ca
which would expand to:

$ cd ~cameron/

123

You can force the shell to complete to specific things.
Table 2-5 lists the standard keys for these.

Table 2-5. Completion command

Command Description

TAB Attempt to perform general completion of
the text

ESC-? List the possible completions

ESC-/ Attempt filename completion

CTRL-X / List the possible filename completions

ESC-~ Attempt username completion

CTRL-X ~ List the possible username completions

ESC-$ Attempt variable completion

124

Command Description

CTRL-X $ List the possible variable completions

ESC-@ Attempt hostname completion

CTRL-X
@ List the possible hostname completions

ESC-! Attempt command completion

CTRL-X ! List the possible command completions

ESC-TAB Attempt completion from previous
commands in the history list

If you find that you are interested only in completing long
filenames, you are probably better off using ESC-/ rather
than TAB. This ensures that the result will be a filename
and not a function or command name.

125

Miscellaneous Commands

Several miscellaneous commands complete emacs editing
mode; they are shown in Table 2-6.

Table 2-6. emacs-mode miscellaneous
commands

Command Description

CTRL-J Same as RETURN

CTRL-L Clears the screen, placing the current line
at the top of the screen

CTRL-M Same as RETURN

CTRL-O Same as RETURN, then display next line
in command history

126

Command Description

CTRL-T Transpose two characters on either side of
point and move point forward by one

CTRL-U Kills the line from the beginning to point

CTRL-V Quoted insert

CTRL-[Same as ESC (most keyboards)

ESC-C Capitalize word after point

ESC-U Change word after point to all capital
letters

ESC-L Change word after point to all lowercase
letters

ESC-. Insert last word in previous command line
after point

127

Command Description

ESC-_ Same as ESC-.

BSD-derived systems use CTRL-V and CTRL-W as
default settings for the "quote next character" and "word
erase" terminal interface functions, respectively.

A few of these miscellaneous commands are worth
discussing, even though they may not be among the most
useful emacs-mode commands.

CTRL-O is useful for repeating a sequence of commands
you have already entered. Just go back to the first
command in the sequence and press CTRL-O instead of
RETURN. This will execute the command and bring up
the next command in the history list. Press CTRL-O again
to enter this command and bring up the next one. Repeat
this until you see the last command in the sequence; then
just hit RETURN.

Of the case-changing commands, ESC-L is useful when
you hit the CAPS LOCK key by accident and don't notice
it immediately. Since all-caps words aren't used too often
in the UNIX world, you probably won't use ESC-U very
often.

128

CTRL-V will cause the next character you type to appear
in the command line as is; i.e., if it is an editing command
(or an otherwise special character like CTRL-D), it will
be stripped of its special meaning.

If it seems like there are too many synonyms for
RETURN, bear in mind that CTRL-M is actually the
same (ASCII) character as RETURN, and that CTRL-J is
actually the same as LINEFEED, which UNIX usually
accepts in lieu of RETURN anyway.

ESC-. and ESC-_ are useful if you want to run several
commands on a given file. The usual UNIX convention is
that a filename is the last argument to a command.
Therefore you can save typing by just entering each
command followed by SPACE and then typing ESC-. or
ESC-_. For example, say you want to examine a file
using more, so you type:

$ more myfilewithaverylongname
Then you decide you want to print it, so you type the
print command lp. You can avoid typing the very long
name by typing lp followed by a space and then ESC-. or
ESC-_; bash will insert myfilewithaverylongname for
you.

[3] Not available in versions of bash prior to 2.05a.

129

[4] emacs users will recognize this as minibuffer
completion.

130

vi Editing Mode
Like emacs-mode, vi-mode essentially creates a one-line
editing window into the history list. vi-mode is popular
because vi is the most standard UNIX editor. But the
function for which vi was designed, writing C programs,
has different editing requirements from those of
command interpreters. As a result, although it is possible
to do complex things in vi with relatively few keystrokes,
the relatively simple things you need to do in bash
sometimes take too many keystrokes.

Like vi, vi-mode has two modes of its own: input and
control mode. The former is for typing commands (as in
normal bash use); the latter is for moving around the
command line and the history list. When you are in input
mode, you can type commands in and hit RETURN to
run them. In addition, you have minimal editing
capabilities via control characters, which are summarized
in Table 2-7

Table 2-7. Editing commands in vi input mode

Command Description

DEL Delete previous character

131

Command Description

CTRL-W Erase previous word (i.e., erase until a
blank)

CTRL-V Quote the next character

ESC Enter control mode (see below)

Note that at least some of these—depending on which
version of UNIX you have—are the same as the editing
commands provided by UNIX through its terminal
interface.[5] vi-mode will use your "erase" character as
the "delete previous character" key; usually it is set to
DEL or CTRL-H (BACKSPACE). CTRL-V works the
same way as in emacs-mode; it causes the next character
to appear in the command line as is and lose its special
meaning.

Under normal circumstances, you just stay in input mode.
But if you want to go back and make changes to your
command line, or if you want to recall previous
commands, you need to go into control mode. To do this,
hit ESC.

132

Simple Control Mode
Commands

A full range of vi editing commands are available to you
in control mode. The simplest of these move you around
the command line and are summarized in Table 2-8.
vi-mode contains two "word" concepts. The simplest is
any sequence of non-blank characters; we'll call this a
non-blank word. The other is any sequence of only
alphanumeric characters (letters and digits) plus the
underscore (_), or any sequence of only
non-alphanumeric characters; we'll just call this a
word.[6]

Table 2-8. Basic vi control mode commands

Command Description

h Move left one character

l Move right one character

w Move right one word

133

Command Description

b Move left one word

W Move to beginning of next non-blank word

B Move to beginning of preceding non-blank
word

e Move to end of current word

E Move to end of current non-blank word

0 Move to beginning of line

^ Move to first non-blank character in line

$ Move to end of line

134

All of these commands except the last three can be
preceded by a number that acts as a repeat count.
Whenever you type a number for the repeat count, the
number replaces the command prompt for the duration of
the repeat command. If your keyboard has cursor motion
keys ("arrow" keys), you can use the left and right arrows
to move between characters instead of the h and l keys.
Repeat counts will work with the cursor keys as well.

The last two will be familiar to users of UNIX utilities
(such as grep) that use regular expressions, as well as to
vi users.

Time for a few examples. Let's say you type in this line
and, before you hit RETURN, decide you want to change
it:

$ fgrep -l Duchess < ~cam/book/alice_in_wonderland[]
As shown, your cursor is beyond the last character of the
line. First, type ESC to enter control mode; your cursor
will move back one space so that it is on the d. Then if
you type h, your cursor will move back to the n. If you
type 3h from the n, you will end up at the r.

Now we will see the difference between the two "word"
concepts. Go back to the end of the line by typing $. If
you type b, the word in question is alice_in_wonderland,
and the cursor will end up on the a:

$ fgrep -l Duchess < ~cam/book/[a]lice_in_wonderland

135

If you type b again, the next word is the slash (it's a
"sequence" of non-alphanumeric characters), so the
cursor ends up over it:

$ fgrep -l Duchess < ~cam/book[/]alice_in_wonderland
However, if you typed B instead of b, the non-blank word
would be the entire pathname, and the cursor would end
up at the beginning of it—over the tilde:

$ fgrep -l Duchess < [~]cam/book/alice_in_wonderland
You would have had to type b four times—or just 4b—to
get the same effect, since there are four "words" in the
part of the pathname to the left of /alice_in_wonderland:
book, slash, cam, and the leading tilde.

At this point, w and W do the opposite: typing w gets you
over the c, since the tilde is a "word," while typing W
brings you to the end of the line. But whereas w and W
take you to the beginning of the next word, e and E take
you to the end of the current word. Thus, if you type w
with the cursor on the tilde, you get to:

$ fgrep -l Duchess < ~[c]am/book/alice_in_wonderland
Then typing e gets you to:

$ fgrep -l Duchess < ~ca[m]/book/alice_in_wonderland
And typing an additional w gets you to:

$ fgrep -l Duchess < ~cam[/]book/alice_in_wonderland

136

On the other hand, E gets you to the end of the current
non-blank word—in this case, the end of the line. (If you
find these commands non-mnemonic, you're right. The
only way to assimilate them is through lots of practice.)

137

Entering and Changing Text

Now that you know how to enter control mode and move
around on the command line, you need to know how to
get back into input mode so you can make changes and
type in additional commands. A number of commands
take you from control mode into input mode; they are
listed in Table 2-9. All of them enter input mode a bit
differently.

Table 2-9. Commands for entering vi input mode

Command Description

i Text inserted before current character
(insert)

a Text inserted after current character
(append)

I Text inserted at beginning of line

138

Command Description

A Text inserted at end of line

R Text overwrites existing text

Most likely, you will use either i or a consistently, and
you may use R occasionally. I and A are abbreviations
for 0i and $a respectively. To illustrate the difference
between i, a, and R, say we start out with our example
line:

$ fgrep -l Duchess < ~cam/book[/]alice_in_wonderland
If you type i followed by end, you will get:

$ fgrep -l Duchess < ~cam/bookend[/]alice_in_wonderland
That is, the cursor will always appear to be under the /
before alice_in_wonderland. But if you type a instead of
i, you will notice the cursor move one space to the right.
Then if you type miss_, you will get:

$ fgrep -l Duchess < ~cam/book/miss_[a]lice_in_wonderland
That is, the cursor will always be just after the last
character you typed, until you type ESC to end your
input. Finally, if you go back to the first a in

139

alice_in_wonderland, type R instead, and then type
through_the_looking_glass, you will see:

$ fgrep -l Duchess < ~cam/book/through_the_looking_glas[s]
In other words, you will be replacing (hence R) instead of
inserting text.

Why capital R instead of lowercase r? The latter is a
slightly different command, which replaces only one
character and does not enter input mode. With r, the next
single character overwrites the character under the cursor.
So if we start with the original command line and type r
followed by a semicolon, we get:

$ fgrep -l Duchess < ~cam/book[;]alice_in_wonderland
If you precede r with a number N, it will allow you to
replace the next N existing characters on the line—but
still not enter input mode. Lowercase r is effective for
fixing erroneous option letters, I/O redirection characters,
punctuation, and so on.

140

Deletion Commands

Now that you know how to enter commands and move
around the line, you need to know how to delete. The
basic deletion command in vi-mode is d followed by one
other letter. This letter determines what the unit and
direction of deletion is, and it corresponds to a motion
command, as listed previously in Table 2-8.

Table 2-10 shows some commonly used examples.

Table 2-10. Some vi-mode deletion commands

Command Description

dh Delete one character backwards

dl Delete one character forwards

db Delete one word backwards

dw Delete one word forwards

141

Command Description

dB Delete one non-blank word backwards

dW Delete one non-blank word forwards

d$ Delete to end of line

d0 Delete to beginning of line

These commands have a few variations and
abbreviations. If you use a c instead of d, you will enter
input mode after it does the deletion. You can supply a
numeric repeat count either before or after the d (or c).
Table 2-11 lists the available abbreviations.

Table 2-11. Abbreviations for vi-mode delete
commands

142

Command Description

D Equivalent to d$ (delete to end of line)

dd Equivalent to 0d$ (delete entire line)

C Equivalent to c$ (delete to end of line,
enter input mode)

cc Equivalent to 0c$ (delete entire line, enter
input mode)

X Equivalent to dl (delete character
backwards)

x Equivalent to dh (delete character
forwards)

Most people tend to use D to delete to end of line, dd to
delete an entire line, and x (as "backspace") to delete
single characters. If you aren't a hardcore vi user, you

143

may find it difficult to make sure the more esoteric
deletion commands are at your fingertips.

Every good editor provides "un-delete" commands as
well as delete commands, and vi-mode is no exception.
vi-mode maintains a delete buffer that stores all of the
modifications to text on the current line only (note that
this is different from the full vi editor). The command u
undoes previous text modifications. If you type u, it will
undo the last change. Typing it again will undo the
change before that. When there are no more undo's, bash
will beep. A related command is . (dot), which repeats the
last text modification command.

There is also a way to save text in the delete buffer
without having to delete it in the first place: just type in a
delete command but use y ("yank") instead of d. This
does not modify anything, but it allows you to retrieve the
yanked text as many times as you like later on. The
commands to retrieve yanked text are p, which inserts the
text on the current line to the right of the cursor, and P,
which inserts it to the left of the cursor. The y, p, and P
commands are powerful but far better suited to "real vi"
tasks like making global changes to documents or
programs than to shell commands, so we doubt you'll use
them very often.

144

Moving Around in the
History List

The next group of vi control mode commands we cover
allows you to move around in and search your command
history. This is the all-important functionality that lets
you go back and fix an erroneous command without
retyping the entire line. These commands are summarized
in Table 2-12.

Table 2-12. vi control mode commands for
searching the command history

Command Description

k or - Move backward one line

j or + Move forward one line

G Move to line given by repeat count

145

Command Description

/string Search backward for string

?string Search forward for string

n Repeat search in same direction as
previous

N Repeat search in opposite direction of
previous

The first two can also be accomplished with the up and
down cursor movement keys if your keyboard has them.
The first three can be preceded by repeat counts (e.g., 3k
or 3- moves back three lines in the command history).

If you aren't familiar with vi and its cultural history, you
may be wondering at the wisdom of choosing such
seemingly poor mnemonics as h, j, k, and l for backward
character, forward line, backward line, and forward
character, respectively. Well, there actually is a rationale
for the choices—other than that they are all together on
the standard keyboard. Bill Joy originally developed vi to
run on Lear-Siegler ADM-3a terminals, which were the

146

first popular models with addressable cursors (meaning
that a program could send an ADM-3a command to move
the cursor to a specified location on the screen). The
ADM-3a's h, j, k, and l keys had little arrows on them, so
Joy decided to use those keys for appropriate commands
in vi. Another (partial) rationale for the command choices
is that CTRL-H is the traditional backspace key, and
CTRL-J denotes linefeed.

Perhaps + and - are better mnemonics than j and k, but
the latter have the advantage of being more easily
accessible to touch typists. In either case, these are the
most basic commands for moving around the history list.
To see how they work, let's use the same examples from
the emacs-mode section earlier.

You enter the example command (RETURN works in
both input and control modes, as does LINEFEED or
CTRL-J):

$ fgrep -l Duchess < ~cam/book/alice_in_wonderland
but you get an error message saying that your option
letter was wrong. You want to change it to -s without
having to retype the entire command. Assuming you are
in control mode (you may have to type ESC to put
yourself in control mode), you type k or - to get the
command back. Your cursor will be at the beginning of
the line:

$ [f]grep -l Duchess < ~cam/book/alice_in_wonderland

147

Type w to get to the -, then l to get to the l. Now you can
replace it by typing rs; press RETURN to run the
command.

Now let's say you get another error message, and you
finally decide to look at the manual page for the fgrep
command. You remember having done this a while ago
today, so rather than typing in the entire man command,
you search for the last one you used. To do this, type ESC
to enter control mode (if you are already in control mode,
this will have no effect), then type / followed by man or
ma. To be on the safe side, you can also type ^ma; the ^
means match only lines that begin with ma.[7]

But typing /^ma doesn't give you what you want: instead,
the shell gives you:

$ make myprogram
To search for "man" again, you can type n, which does
another backward search using the last search string.
Typing / again without an argument and hitting
RETURN will accomplish the same thing.

The G command retrieves the command whose number is
the same as the numeric prefix argument you supply. G
depends on the command numbering scheme described in
Chapter 3 Section 3.4.2.3. Without a prefix argument, it
goes to command number 1. This may be useful to former
C shell users who still want to use command numbers.

148

Character-Finding
Commands

There are some additional motion commands in vi-mode,
although they are less useful than the ones we saw earlier
in the chapter. These commands allow you to move to the
position of a particular character in the line. They are
summarized in Table 2-13, in which x denotes any
character.

All of these commands can be preceded by a repeat
count.

Table 2-13. vi-mode character-finding commands

Command Description

fx Move right to next occurrence of x

Fx Move left to previous occurrence of x

149

Command Description

tx Move right to next occurrence of x, then
back one space

Tx Move left to previous occurrence of x, then
forward one space

; Redo last character-finding command

, Redo last character-finding command in
opposite direction

Starting with the previous example: let's say you want to
change Duchess to Duckess. Make sure that you're at the
end of the line (or, in any case, to the left of the h in
Duchess); then, if you type Fh, your cursor will move to
the h:

$ fgrep -l Duc[h]ess < ~cam/book/alice_in_wonderland
At this point, you could type r to replace the h with k.
But let's say you wanted to change Duchess to Dutchess.
You would need to move one space to the right of the u.
Of course, you could just type l. But, given that you're

150

somewhere to the right of Duchess, the fastest way to
move to the c would be to type Tu instead of Fu followed
by l.

As an example of how the repeat count can be used with
character-finding commands, let's say you want to change
the filename from alice_in_wonderland to alice. In this
case, assuming your cursor is still on the D, you need to
get to one character beyond the second slash. To do this,
you can type 2fa. Your cursor will then be on the a in
alice_in_wonderland.

The character-finding commands also have associated
delete commands. Read the command definitions in the
previous table and mentally substitute "delete" for move.
You'll get what happens when you precede the given
character-finding command with a d. The deletion
includes the character given as argument. For example,
assume that your cursor is under the a in
alice_in_wonderland:

$ fgrep -l Duchess < ~cam/book/[a]lice_in_wonderland
If you want to change alice_in_wonderland to
natalie_in_wonderland, one possibility is to type dfc.
This means "delete right to next occurrence of c," i.e.,
delete "alic". Then you can type i (to enter input mode)
and then "natali" to complete the change.

One final command rounds out the vi control mode
commands for getting around on the current line: you can
use the pipe character (|) to move to a specific column,

151

whose number is given by a numeric prefix argument.
Column counts start at 1; count only your input, not the
space taken up by the prompt string. The default repeat
count is 1, of course, which means that typing | by itself is
equivalent to 0 (see Table 2-8).

152

Textual Completion

Although the character-finding commands and | are not
particularly useful, vi-mode provides one additional
feature that we think you will use quite often: textual
completion. This feature is not part of the real vi editor,
and it was undoubtedly inspired by similar features in
emacs and, originally, in the TOPS-20 operating system
for DEC mainframes.

The rationale behind textual completion is simple: you
should have to type only as much of a filename, user
name, function, etc. as is necessary. Backslash (\) is the
command that tells bash to do completion in vi-mode. If
you type in a word, hit ESC to enter control mode, and
then type \, one of four things will happen; they are the
same as for TAB in emacs-mode:

1. If there is nothing whose name begins with the
word, the shell will beep and nothing further will
happen.

2. If there is a command name in the search path, a
function name, or a filename that the string
uniquely matches, the shell will type the rest of
it, followed by a space in case you want to type
in more command arguments. Command name

153

completion is only attempted when the word is in
a command position (e.g., at the start of a line).

3. If there is a directory that the string uniquely
matches, the shell will complete the filename,
followed by a slash.

4. If there is more than one way to complete the
name, the shell will complete out to the longest
common prefix among the available choices.
Commands in the search path and functions take
precedence over filenames.

A related command is *. It behaves similarly to ESC-\,
but if there is more than one completion possibility
(number four in the previous list), it lists all of them and
allows you to type further. Thus, it resembles the * shell
wildcard character.

Less useful is the command =, which does the same kind
of expansion as *, but in a different way. Instead of
expanding the names onto the command line, it prints
them, then gives you your shell prompt back and retypes
whatever was on your command line before you typed =.
For example, if the files in your directory include
tweedledee.c and tweedledum.c, and you type tweedl
followed by ESC and then =, you will see this:

$ cc tweedl
tweedledee.c tweedledum.c

154

It is also possible to expand other environment entities, as
we saw in emacs-mode. If the text being expanded is
preceded by a dollar sign ($), the shell will attempt to
expand the name to that of a shell variable. If the text is
preceded by a tilde (~), expansion to a username is
attempted; if preceded by an at sign (@), a hostname.

155

Miscellaneous Commands

Several miscellaneous commands round out vi-mode;
some of them are quite esoteric. They are listed in Table
2-14.

Table 2-14. Miscellaneous vi-mode commands

Command Description

~ Invert (twiddle) case of current
character(s)

- Append last word of previous command,
enter input mode

CTRL-L
Clear the screen and redraw the current
line on it; good for when your screen
becomes garbled

Prepend # (comment character) to the line
and send it to the history list; useful for

156

Command Description

saving a command to be executed later
without having to retype it[8]

[8] The line is also "executed" by the shell. However, #
is the shell's comment character, so the shell ignores it.

The first of these can be preceded by a repeat count. A
repeat count of n preceding the ~ changes the case of the
next n characters. The cursor will advance accordingly.

A repeat count preceding _ causes the nth word in the
previous command to be inserted in the current line;
without the count, the last word is used. Omitting the
repeat count is useful because a filename is usually the
last thing on a UNIX command line, and because users
often run several commands in a row on the same file.
With this feature, you can type all of the commands
(except the first) followed by ESC-_, and the shell will
insert the filename.

[5] In particular, versions of UNIX derived from 4.x BSD
have all of these commands built in.

157

[6] Neither of these definitions is the same as the
definition of a word in emacs-mode.

[7] Fans of vi and search utilities like grep should note
that caret (^) for beginning-of-line is the only context
operator vi-mode provides for search strings.

158

The fc Command
fc is a built-in shell command that provides a superset of
the C shell history mechanism. You can use it to examine
the most recent commands you entered, to edit one or
more commands with your favorite "real" editor, and to
run old commands with changes without having to type
the entire command in again. We'll look at each of these
uses in turn.

The -l option to fc lists previous commands. It takes
arguments that refer to commands in the history list.
Arguments can be numbers or alphanumeric strings;
numbers refer to the commands in the history list, while
strings refer to the most recent command beginning with
the string. fc treats arguments in a rather complex way:

• If you give two arguments, they serve as the first
and last commands to be shown.

• If you specify one number argument, only the
command with that number is shown.

• With a single string argument, it searches for the
most recent command starting with that string
and shows you everything from that command to
the most recent command.

159

• If you specify no arguments, you will see the last
16 commands you entered. bash also has a
built-in command for displaying the history:
history.

A few examples should make these options clearer. Let's
say you logged in and entered these commands:

ls -l
more myfile
vi myfile
wc -l myfile
pr myfile | lp -h

If you type fc -l with no arguments, you will see the
above list with command numbers, as in:

1 ls -l
2 more myfile
3 vi myfile
4 wc -l myfile
5 pr myfile | lp -h

Adding another option, -n, suppresses the line numbers.
If you want to see only commands 2 through 4, type fc -l
2 4. If you want to see only the vi command, type fc -l 3.
To see everything from the vi command up to the present,
type fc -l v. Finally, if you want to see commands
between more and wc, you can type fc -l m w, fc -l m 4,
fc -l 2 4, etc.

The other important option to fc is -e for "edit." This is
useful as an "escape hatch" from vi- and emacs-modes if
you aren't used to either of those editors. You can specify

160

the pathname of your favorite editor and edit commands
from your history list; then when you have made the
changes, the shell will actually execute the new lines.

Let's say your favorite editor is a little home-brew gem
called zed. You could edit your commands by typing:

$ fc -e /usr/local/bin/zed
This seems like a lot of work just to fix a typo in your
previous command; fortunately, there is a better way.
You can set the environment variable FCEDIT to the
pathname of the editor you want fc to use. If you put a
line in your .bash_profile or environment file saying:[9]

FCEDIT=/usr/local/bin/zed

you will get zed when you invoke fc. If FCEDIT isn't set,
then bash uses whatever the variable EDITOR is set to.
If that's also not set, then bash defaults to vi.

fc is usually used to fix a recent command. When used
without options, it handles arguments a bit differently
than it does for the fc -l variation discussed earlier:

• With no arguments, fc loads the editor with the
most recent command.

• With a numeric argument, fc loads the editor
with the command with that number.

• With a string argument, fc loads the most recent
command starting with that string.

161

• With two arguments to fc, the arguments specify
the beginning and end of a range of commands,
as above.

Remember that fc actually runs the command(s) after you
edit them. Therefore, the last-named choice can be
dangerous. bash will attempt to execute all commands in
the range you specify when you exit your editor. If you
have typed in any multi-line constructs (like those we will
cover in Chapter 5), the results could be even more
dangerous. Although these might seem like valid ways of
generating "instant shell programs," a far better strategy
would be to direct the output of fc -ln with the same
arguments to a file; then edit that file and execute the
commands when you're satisfied with them:

$ fc -l cp > lastcommands$ vi lastcommands$ source lastcommands
In this case, the shell will not try to execute the file when
you leave the editor!

There is one final option with fc. fc -s allows you to rerun
a command. With an argument, fc will rerun the last
command starting with the given string. Without an
argument, it will rerun the previous command. The -s
option also allows you to provide a pattern and
replacement. For example, if you typed:

$ cs prog.c
You could correct it with fc -s cs=cc. This can be
combined with the string search: fc -s cs=cc cs. The last
occurrence of cs will be found and replaced with cc.

162

[9] See Chapter 3 for information on the bash startup file
.bash_profile.

163

History Expansion
If you are a C shell user, you may be familiar with the
history expansion mechanism that it provides. bash
provides a similar set of features. History expansion is a
primitive way to recall and edit commands in the history
list. The way to recall commands is by the use of event
designators. Table 2-15 gives a complete list.

Table 2-15. Event designators

Command Description

! Start a history substitution

!! Refers to the last command

! n Refers to command line n

!- n Refers to the current command line
minus n

164

Command Description

! string Refers to the most recent command
starting with string

!? string?
Refers to the most recent command
containing string; the ending ? is
optional

^
string1^string2

Repeat the last command, replacing
string1 with string2

By far the most useful command is !!. Typing !! on the
command line re-executes the last command. If you know
the command number of a specific command, you can use
the !n form, where n is the command number. Command
numbers can be determined from the history command.
Alternatively, you can re-execute the most recent
command beginning with the specified string by using !
string.

You might also find the last expansion in the table to be
of some use if you've made a typing mistake. For
example, you might have typed:

$ cat through_the_loking_glass | grep Tweedledee > dee.list

165

Instead of moving back to the line and changing loking to
looking, you could just type ^lok^look. This will change
the string lok to look and then execute the resulting
command.

It's also possible to refer to certain words in a previous
command by the use of a word designator. Table 2-16
lists available designators. Note that when counting
words, bash (like most UNIX programs) starts counting
with zero, not with one.

Table 2-16. Word designators

Designator Description

0 The zeroth (first) word in a line

n The nth word in a line

^ The first argument (the second word)

$ The last argument in a line

166

Designator Description

% The word matched by the most recent
?string search

x-y A range of words from x to y. -y is
synonymous with 0-y

*

All words but the zeroth (first);
synonymous with 1-$.; if there is only one
word on the line, an empty string is
returned

x * Synonymous with x-$

x- The words from x to the second to last
word

The word designator follows the event designator,
separated by a colon. You could, for example, repeat the
previous command with different arguments by typing
!!:0 followed by the new arguments.

167

Event designators may also be followed by modifiers.
The modifiers follow the word designator, if there is one.
Table 2-17 lists the available modifiers.

Table 2-17. Modifiers

Modifier Description

h Removes a trailing pathname component,
leaving the head

r Removes a trailing suffix of the form .xxx

e Removes all but the trailing suffix

t Removes all leading pathname components,
leaving the tail

p Prints the resulting command but doesn't
execute it

q Quotes the substituted words, escaping
further substitutions

168

Modifier Description

x Quotes the substituted words, breaking
them into words at blanks and newlines

s/old/new/ Substitutes new for old

More than one modifier may be used with an event
designator; each one is separated by a colon.

History expansion is fine for re-executing a command
quickly, but it has been superseded by the command-line
editing facilities that we looked at earlier in this chapter.
Its inclusion is really only for completeness, and we feel
you are better off mastering the techniques offered in the
vi or emacs editing modes.

169

readline
bash's command-line editing interface is readline. It is
actually a library of software developed for the GNU
project that can be used by applications requiring a
text-based interface. It provides editing and
text-manipulation features to make it easier for the user to
enter and edit text. Just as importantly, it allows
standardization, in terms of both key strokes and
customization methods, across all applications that use it.

readline provides default editing in either of two modes:
vi or emacs. Both modes provide a subset of the editing
commands found in the full editors. We've already looked
at the command sets of these modes in the previous
sections of this chapter. We'll now look at how you can
make your own command sets.

readline gives bash added flexibility compared to other
shells because it can be customized through the use of
key bindings, either from the command line or in a
special startup file. You can also set readline variables.
We'll see how you can set up readline using your own
startup file now, and then go on to examine how the
binding capability can be used from the command line.

170

The readline Startup File

The default startup file is called .inputrc and must exist in
your home directory if you wish to customize readline.
You can change the default filename by setting the
environment variable INPUTRC (see Chapter 3 for
further information on environment variables).

When bash starts up, it reads the startup file (if there is
one) and any settings there come into effect. The startup
file is just a sequence of lines that bind a keyname to a
macro or readline function name. You can also place
comments in the file by preceding any line with a #.

You can use either an English name or a key escape
sequence for the keyname. For example, to bind CTRL-T
to the movement command for moving to the end of the
current line, you could place Control-t: end-of-line in
your .inputrc. If you wanted to use a key escape sequence
you could have put "\C-t<">: end-of-line. The \C- is the
escape sequence prefix for Control. The advantage of the
key sequence is that you can specify a sequence of keys
for an action. In our example, once readline has read this
line, typing a CTRL-T will cause the cursor to move to
the end of the line.

The end-of-line in the previous example is a readline
function. There are over 60 functions that allow you to
control everything from cursor motions to changing text
and command completion (for a complete list, see the

171

bash manual page). All of the emacs and vi editing mode
commands that we looked at in this chapter have
associated functions. This allows you to customize the
default modes or make up completely new ones using
your own key sequences.

Besides the readline functions, you can also bind a macro
to a key sequence. A macro is simply a sequence of
keystrokes inside single or double quotes. Typing the key
sequence causes the keys in the macro to be entered as
though you had typed them. For example, we could bind
some text to CTRL-T; "\C-t<">: <">Curiouser and
curiouser!<">. Hitting CTRL-T would cause the phrase
Curiouser and curiouser! to appear on the command
line.

If you want to use single or double quotes in your macros
or key sequence, you can escape them by using a
backslash (\). Table 2-18 lists the common escape
sequences.

Table 2-18. Escape sequences

Sequence Description

\C- Control key prefix

172

Sequence Description

\M- Meta (Escape) key prefix

\e The escape character

\\ The backslash character (\)

\<"> The double quote character (<">)

\' The single quote character (')

readline also allows simple conditionals in the .inputrc.
There are three directives: $if, $else, and $endif. The
conditional of the $if can be an editing mode, a terminal
type, or an application-specific condition.

To test for an editing mode, you can use the form mode=
and test for either vi or emacs. For instance, to set up
readline so that setting CTRL-T will take place only in
emacs mode, you could put the following in your
.inputrc:

173

$if mode=emacs
"\C-t": "Curiouser and curiouser!"
$endif

Likewise, to test for a terminal type, you can use the form
term=. You must provide the full terminal name on the
right-hand side of the test. This is useful when you need a
terminal-specific key binding. You may, for instance,
want to bind the function keys of a particular terminal
type to key sequences.

If you have other applications that use readline, you
might like to keep your bash-specific bindings separate.
You can do this with the last of the conditionals. Each
application that uses readline sets its own variable, which
you can test for. To test for bash specifics, you could put
$if bash into your .inputrc.

readline variables

readline has its own set of variables that you can set from
within your .inputrc. Table 2-19 lists them.[10]

Table 2-19. readline variables

174

Variable Description

bell-style

If set to none, readline never
rings the bell (beeps). If set to
visible, readline will attempt
to use a visible bell. If set to
audible, it will attempt to ring
the bell. The default is
audible.

comment-begin

The string to insert when the
readline insert-comment
command is executed. The
default is a #.

completion-query-items

Determines when the user is
asked to see further
completions if the number of
completions is greater than
that given. The default is 100.

convert-meta

If set to On, converts
characters with the eighth bit
set to an ASCII key sequence
by stripping the eighth bit and

175

Variable Description

prepending an escape
character. The default is On.

disable-completion

If set to On, inhibits word
completion. Completion
characters will be inserted
into the line as if they had
been mapped to self-insert.
The default is Off.

editing-mode Sets the editing mode to vi or
emacs.

enable-keypad

If set to On, readline tries to
enable the keyboard's
application keypad when it is
called. Some systems need
this to enable the arrow keys.
The default is Off.

expand-tilde If set to On, tilde expansion is
attempted when readline

176

Variable Description

attempts word completion.
The default is Off.

horizontal-scroll-mode

Set to On means that lines
will scroll horizontally if you
type beyond the right-hand
side of the screen. The default
is Off, which wraps the line
onto a new screen line.

input-meta

If set to On, eight-bit input
will be accepted. The default
is Off. This is synonymous
with meta-flag.

keymap

Sets readline's current
keymap for bindings.
Acceptable names are emacs,
emacs-standard, emacs-meta,
emacs-ctlx, vi, vi-move,
vi-command and vi-insert.
The default is emacs. Note
that the value of

177

Variable Description

editing-mode also affects the
keymap.

mark-directories
If set to On, completed
directory names have a slash
appended.

mark-modified-lines

If set to On, displays an
asterisk at the start of history
lines that have been modified.
The default is Off.

meta-flag
If set to On, eight-bit input
will be accepted. The default
is Off.

output-meta
If set to On, displays
characters with the eighth bit
set directly. The default is Off.

178

Variable Description

show-all-if-ambiguous

If set to On, words with more
than one possible completion
are listed instead of ringing
the bell. The default is Off.

visible-stats

If set to On, a character
denoting a file's type as
reported by the stat system
call is appended to the
filename when listing possible
completions. The default is
Off.

To set any of the variables, you can use the set command
in your .inputrc. For example, to set vi-mode when you
start up, you could place the line set editing-mode vi in
your .inputrc. Every time bash starts it would change to
vi-mode.

179

Key Bindings Using bind

If you want to try out key bindings or you want to see
what the current settings are, you can do it from the bash
command line by using the bind command. The binding
syntax is the same as that of the .inputrc file, but you
have to surround each binding in quotes so that it is taken
as one argument.

To bind a string to CTRL-T, we could type bind
`"\C-t<">: <">Curiouser and curiouser!"'. This would
bind the given string to CTRL-T just as in the .inputrc,
except that the binding will apply only to the current shell
and will cease once you log out.

bind also allows you to print out the bindings currently in
effect by typing bind -P.[11] If you do so, you'll see
things like:

abort can be found on "\C-g", "\C-x\C-g", "\e\C-g".
accept-line can be found on "\C-j", "\C-m".
alias-expand-line is not bound to any keys
arrow-key-prefix is not bound to any keys
backward-char can be found on "\C-b", "\eOD", "\e[D".
...

If you just want to see the names of the readline
functions, you can use bind -l.

180

You can also unbind a function by using bind -u along
with the name of the function; all keys for that function
will then be unbound. Unbinding a key sequence can be
done with bind -r followed by the sequence.

bind -x is useful if you want to bind a shell command to a
key sequence. For example, bind -x `"\C-l":ls' binds
CTRL-L to the ls command. Hitting CTRL-L would then
give a directory listing.

Another option you might find useful is -p. This prints
out the bindings to standard output in a format that can be
re-read by bind, or used as a .inputrc file. So, to create a
complete .inputrc file that you can then edit, you could
type bind -p > .inputrc.

To read the file back in again you can use another option,
-f. This option takes a filename as its argument and reads
the key bindings from that file. You can also use it to
update the key bindings if you've just modified your
.inputrc.

[10] The variables disable-completion, enable-keypad,
input-meta, mark-directories, and visible-stats are not
available in versions of bash prior to 2.0.

[11] Versions of bash prior to 2.0 use -d instead of -p, and
-v instead of -P. Also, the -r, -V, -S, -s, -u, and the new
-v and -x options are not available in these older versions.

181

Keyboard Habits
In this chapter we have seen that bash provides
command-line editing with two modes: vi and emacs.
You may be wondering why these two editors were
chosen. The primary reason is because vi and emacs are
the most widely used editors for UNIX. People who have
used either editor will find familiar editing facilities.

If you are not familiar with either of these editors, you
should seriously consider adopting emacs-mode keyboard
habits. Because it is based on control keys and doesn't
require you to think in terms of a "command mode" and
"insert mode," you will find emacs-mode easier to
assimilate. Although the full emacs is an extremely
powerful editor, its command structure lends itself very
well to small subsetting: there are several "mini-emacs"
editors floating around for UNIX, MS-DOS, and other
systems.

The same cannot be said for vi, because its command
structure is really meant for use in a full-screen editor. vi
is quite powerful too, in its way, but its power becomes
evident only when it is used for purposes similar to that
for which it was designed: editing source code in C and
LISP. As mentioned earlier, a vi user has the power to
move mountains in few keystrokes—but at the cost of
being unable to do anything meaningful in very few
keystrokes. Unfortunately, the latter is most desired in a

182

command interpreter, especially nowadays when users
are spending more time within applications and less time
working with the shell. In short, if you don't already know
vi, you will probably find its commands obscure and
confusing.

Both bash editing modes have quite a few commands;
you will undoubtedly develop keyboard habits that
include just a few of them. If you use emacs-mode and
you aren't familiar with the full emacs, here is a subset
that is easy to learn yet enables you to do just about
anything:

• For cursor motion around a command line, stick
to CTRL-A and CTRL-E for beginning and end
of line, and CTRL-F and CTRL-B for moving
around.

• Delete using DEL (or whatever your "erase" key
is) and CTRL-D; as with CTRL-F and CTRL-B,
hold down to repeat if necessary. Use CTRL-K to
erase the entire line.

• Use CTRL-P and CTRL-N (or the up and down
arrow keys) to move through the command
history.

• Use CTRL-R to search for a command you need
to run again.

• Use TAB for filename completion.

183

After a few hours spent learning these keystrokes, you
will wonder how you ever got along without
command-line editing.

184

Chapter 3. Customizing
Your Environment
An environment is a collection of concepts that express
the things a computer system or other set of tools does in
terms designed to be understandable and coherent, and a
look and feel that is comfortable. For example, your desk
at work is an environment. Concepts involved in desk
work usually include memos, phone calls, letters, forms,
etc. The tools on or in your desk that you use to deal with
these things include paper, staples, envelopes, pens, a
telephone, a calculator, etc. Every one of these has a set
of characteristics that express how you use it; such
characteristics range from location on your desk or in a
drawer (for simple tools) to more sophisticated things like
which numbers the memory buttons on your phone are set
to. Taken together, these characteristics make up your
desk's look and feel.

You customize the look and feel of your desk
environment by putting pens where you can most easily
reach them, programming your phone buttons, etc. In
general, the more customization you have done, the more
tailored to your personal needs—and therefore the more
productive—your environment is.

Similarly, UNIX shells present you with such concepts as
files, directories, and standard input and output, while

185

UNIX itself gives you tools to work with these, such as
file manipulation commands, text editors, and print
queues. Your UNIX environment's look and feel is
determined by your keyboard and display, of course, but
also by how you set up your directories, where you put
each kind of file, and what names you give to files,
directories, and commands. There are also more
sophisticated ways of customizing your shell
environment.

This chapter will look at the four most important features
that bash provides for customizing your environment.

Special files

The files .bash_profile, .bash_logout, and .bashrc
that are read by bash when you log in and out or start
a new shell.

Aliases

Synonyms for commands or command strings that
you can define for convenience.

Options

Controls for various aspects of your environment that
you can turn on and off.

Variables

Changeable values that are referred to by a name.
The shell and other programs can modify their

186

behavior according to the values stored in the
variables.

Although these features are not the only ones available,
they form the basis for doing more advanced
customization. They are also the features that are
common to the various shells available on UNIX. Later
chapters will cover more advanced shell features, such as
the ability to program the shell.

The .bash_profile,
.bash_logout, and
.bashrc Files
Three files in your home directory have a special
meaning to bash, providing a way for you to set up your
account environment automatically when you log in and
when you invoke another bash shell, and allowing you to
perform commands when you log out. These files may
already exist in your home directory, depending on how
your system administrator has set up your account. If they
don't exist, your account is using only the default system
file /etc/profile. You can easily create your own bash files
using your favorite text editor. If you are unfamiliar with
text editors available under UNIX, we suggest that you
familiarize yourself with one of the better-known ones
such as vi or emacs before proceeding further with the
techniques described in this chapter.

187

The most important bash file, .bash_profile, is read and
the commands in it executed by bash every time you log
in to the system. If you examine your .bash_profile you
will probably see lines similar to:

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin
SHELL=/bin/bash
MANPATH=/usr/man:/usr/X11/man
EDITOR=/usr/bin/vi

PS1='\h:\w\$ '
PS2='> '
export EDITOR

These lines define the basic environment for your login
account. For the moment, it is probably best to leave
these lines alone until you understand what they do.
When editing your .bash_profile, just add your new lines
after the existing ones.

Note that whatever you add to your .bash_profile won't
take effect until the file is re-read by logging out and then
logging in again. Alternatively, you can also use the
source command.[1] For example:

source .bash_profile

source executes the commands in the specified file, in
this case .bash_profile, including any commands that you
have added.

bash allows two synonyms for .bash_profile: .bash_login,
derived from the C shell's file named .login, and .profile,
derived from the Bourne shell and Korn shell files named

188

.profile. Only one of these three is read when you log in.
If .bash_profile doesn't exist in your home directory, then
bash will look for .bash_login. If that doesn't exist it will
look for .profile.

One advantage of bash's ability to look for either
synonym is that you can retain your .profile if you have
been using the Bourne shell. If you need to add
bash-specific commands, you can put them in
.bash_profile followed by the command source .profile.
When you log in, all the bash-specific commands will be
executed, and bash will source .profile, executing the
remaining commands. If you decide to switch to using the
Bourne shell you don't have to modify your existing files.
A similar approach was intended for .bash_login and the
C shell .login, but due to differences in the basic syntax
of the shells, this is not a good idea.

.bash_profile is read and executed only by the login shell.
If you start up a new shell (a subshell) by typing bash on
the command line, it will attempt to read commands from
the file .bashrc. This scheme allows you the flexibility to
separate startup commands needed at login time from
those you might need when you run a subshell. If you
need to have the same commands run regardless of
whether it is a login shell or a subshell, you can just use
the source command from within .bash_profile to execute
.bashrc. If .bashrc doesn't exist then no commands are
executed when you start up a subshell.

189

The file .bash_logout is read and executed every time a
login shell exits. It is provided to round out the
capabilities for customizing your environment. If you
wanted to execute some commands that remove
temporary files from your account or record how much
time you have spent logged in to the system then you
would place the commands in .bash_logout. This file
doesn't have to exist in your account—if it isn't there
when you log out, then no extra commands are executed.

[1] You can also use the synonymous command dot (.).

190

Aliases
If you have used UNIX for any length of time you will
have noticed that there are many commands available and
that some of them have cryptic names. Sometimes the
commands you use the most have a string of options and
arguments that need to be specified. Wouldn't it be nice if
there was a feature that let you rename the commands or
allowed you to type in something simple instead of half a
dozen options? Fortunately, bash provides such a feature:
the alias.[2]

Aliases can be defined on the command line, in your
.bash_profile, or in your .bashrc, using this form:

alias name=command

This syntax specifies that name is an alias for command.
Whenever you type name as a command, bash will
substitute command in its place when it executes the line.
Notice that there are no spaces on either side of the equal
sign (=); this is the required syntax.

There are a few basic ways to use an alias. The first, and
simplest, is as a more mnemonic name for an existing
command. Many commonly used UNIX commands have
names that are poor mnemonics and are therefore
excellent candidates for aliasing, the classic example
being:

191

alias search=grep

grep, the UNIX file-searching utility, was named as an
acronym for something like "Generalized Regular
Expression Parser."[3] This acronym may mean
something to a computer scientist, but not to the office
administrator who has to find Fred in a list of phone
numbers. If you have to find Fred and you have the word
search defined as an alias for grep, you can type:

$ search Fred phonelist
Some people who aren't particularly good typists like to
use aliases for typographical errors they make often. For
example:

alias emcas=emacs
alias mali=mail
alias gerp=grep

This can be handy, but we feel you're probably better off
suffering with the error message and getting the correct
spelling under your fingers. Another common way to use
an alias is as a shorthand for a longer command string.
For example, you may have a directory to which you
need to go often. It's buried deep in your directory
hierarchy, so you want to set up an alias that will allow
you to cd there without typing (or even remembering) the
entire pathname:

alias cdvoy='cd sipp/demo/animation/voyager'

192

Notice the quotes around the full cd command; these are
necessary if the string being aliased consists of more than
one word.[4]

As another example, a useful option to the ls command is
-F: it puts a slash (/) after directory files and an asterisk
(*) after executable files. Since typing a dash followed by
a capital letter is inconvenient, many people define an
alias like this:

alias lf='ls -F'

A few things about aliases are important to remember.
First, bash makes a textual substitution of the alias for
that which it is aliasing; it may help to imagine bash
passing your command through a text editor or word
processor and issuing a "change" or "substitute"
command before interpreting and executing it. Any
special characters (such as wildcards like * and ?) that
result when the alias is expanded are interpreted properly
by the shell. [5] For example, to make it easier to print all
of the files in your directory, you could define the alias:

alias printall='pr * | lpr'

Second, keep in mind that aliases are recursive, which
means that it is possible to alias an alias. A legitimate
objection to the previous example is that the alias, while
mnemonic, is too long and doesn't save enough typing. If
we want to keep this alias but add a shorter abbreviation,
we could define:

alias pa=printall

193

With recursive aliasing available it would seem possible
to create an infinite loop:

alias ls='ls -l'

bash ensures that this loop cannot happen, because only
the first word of the replacement text is checked for
further aliasing; if that word is identical to the alias being
expanded, it is not expanded a second time. The above
command will work as expected (typing ls produces a
long list with permissions, sizes, owners, etc.), while in
more meaningless situations such as:

alias listfile=ls
alias ls=listfile

the alias listfile is ignored.

Aliases can be used only for the beginning of a command
string—albeit with certain exceptions. In the cd example
above, you might want to define an alias for the directory
name alone, not for the entire command. But if you
define:

alias anim=sipp/demo/animation/voyager

and then type cd anim, bash will probably print a
message like anim: No such file or directory.

An obscure feature of bash's alias facility—one not
present in the analogous C shell feature—provides a way
around this problem. If the value of an alias (the right side
of the equal sign) ends in a blank, then bash tries to do
alias substitution on the next word on the command line.

194

To make the value of an alias end in a blank, you need to
surround it with quotes.

Here is how you would use this capability to allow aliases
for directory names, at least for use with the cd
command. Just define:

alias cd='cd '

This causes bash to search for an alias for the directory
name argument to cd, which in the previous example
would enable it to expand the alias anim correctly.

Another way to define a directory variable for use with
the cd command is to use the environment variable
cdable_vars, discussed later in this chapter.

Finally, there are a few useful adjuncts to the basic alias
command. If you type alias name without an equal sign
(=) and value, the shell will print the alias's value or alias
name not found if it is undefined. If you type alias
without any arguments, you get a list of all the aliases you
have defined. The command unalias name removes any
alias definition for its argument.

Aliases are very handy for creating a comfortable
environment, but they have essentially been superseded
by shell scripts and functions, which we will look at in
the next chapter. These give you everything aliases do
plus much more, so if you become proficient at them, you
may find that you don't need aliases anymore. However,
aliases are ideal for novices who find UNIX to be a rather

195

forbidding place, full of terseness and devoid of good
mnemonics. Chapter 4 shows the order of precedence
when, for example, an alias and a function have the same
name.

[2] C shell users should note that the bash alias feature
does not support arguments in alias expansions, as C shell
aliases do. This functionality is provided by functions,
which we'll look at in Chapter 4.

[3] Another theory has it that grep stands for the
command "g/re/p", in the old ed text editor, which does
essentially the same thing as grep.

[4] This contrasts with C shell aliases, in which the quotes
aren't required.

[5] An important corollary: wildcards and other special
characters cannot be used in the names of aliases, i.e., on
the left side of the equal sign.

196

Options
While aliases let you create convenient names for
commands, they don't really let you change the shell's
behavior. Options are one way of doing this. A shell
option is a setting that is either "on" or "off." While
several options relate to arcane shell features that are of
interest only to programmers, those that we will cover
here are of interest to all users.

The basic commands that relate to options are set -o
optionname and set +o optionname. You can change
more than one option with the one set command by
preceding each optionname with a -o or +o. The use of
plus (+) and minus (-) signs is counterintuitive: the - turns
the named option on, while the + turns it off. The reason
for this incongruity is that the dash (-) is the conventional
UNIX way of specifying options to a command, while the
use of + is an afterthought.

Most options also have one-letter abbreviations that can
be used in lieu of the set -o command; for example, set -o
noglob can be abbreviated set -f. These abbreviations are
carryovers from the Bourne shell. Like several other
"extra" bash features, they exist to ensure upward
compatibility; otherwise, their use is not encouraged.

Table 3-1 lists the options that are useful to general UNIX
users. All of them are off by default except as noted.

197

Table 3-1. Basic shell options

Option Description

emacs Enters emacs editing mode (on by default)

ignoreeof

Doesn't allow use of a single CTRL-D to
log off; use the exit command to log off
immediately (this has the same effect as
setting the shell variable IGNOREEOF=10)

noclobber Doesn't allow output redirection (>) to
overwrite an existing file

noglob
Doesn't expand filename wildcards like *
and ? (wildcard expansion is sometimes
called globbing)

nounset Indicates an error when trying to use a
variable that is undefined

vi Enters vi editing mode

198

There are several other options (21 in all; Appendix B
lists them). To check the status of an option, just type set
-o. bash will print a list of all options along with their
settings.

shopt

bash 2.0 introduced a new built-in for configuring shell
behaviour, shopt. This built-in is meant as a replacement
for option configuration originally done through
environment variables and the set command. [6]

The shopt -o functionality is a duplication of parts of the
set command and is provided for completeness on the
part of shopt, while retaining backward compatibility by
its continued inclusion in set.

The format for this command is shopt options
option-names. Table 3-2 lists shopt's options.

Table 3-2. Options to shopt

Option Meaning

-p Displays a list of the settable options and their
current values

199

Option Meaning

-s Sets each option name

-u Unsets each option name

-q Suppresses normal output; the return status
indicates if a variable is set or unset

-o
Allows the values of the option names to be
those defined for the -o option of the set
command

The default action is to unset (turn off) the named
options. If no options and arguments are given, or the -p
option is used, shopt displays a list of the settable options
and the values that they currently have. If -s or -u is also
given, the list is confined to only those options that are set
or unset, respectively.

A list of the most useful option names is given in Table
3-3. A complete list is given in Appendix B.

Table 3-3. shopt option names

200

Option Meaning

cdable_vars

If set, an argument to the cd built-in
command that is not a directory is
assumed to be the name of a variable
whose value is the directory to change to.

checkhash

If set, bash checks that a command found
in the hash table exists before trying to
execute it. If a hashed command no longer
exists, a normal path search is performed.

cmdhist
If set, bash attempts to save all lines of a
multiple-line command in the same
history entry.

dotglob
If set, bash includes filenames beginning
with a . (dot) in the results of pathname
expansion.

execfail

If set, a non-interactive shell will not exit
if it cannot execute the file specified as an
argument to the exec command. An
interactive shell does not exit if exec fails.

201

Option Meaning

histappend

If set, the history list is appended to the
file named by the value of the HISTFILE
variable when the shell exits, rather than
overwriting the file.

lithist

If set, and the cmdhist option is enabled,
multiline commands are saved to the
history with embedded newlines, rather
than using semicolon separators where
possible.

mailwarn

If set, and a file that bash is checking for
mail has been accessed since the last time
it was checked, the message "The mail in
mailfile has been read" is displayed.

We'll look at the use of the various options later in this
chapter.

[6] Appendix B provides a complete list of shopt shell
options and the corresponding environment variables in
earlier versions of the shell.

202

Shell Variables
There are several characteristics of your environment that
you may want to customize but that cannot be expressed
as an on/off choice. Characteristics of this type are
specified in shell variables. Shell variables can specify
everything from your prompt string to how often the shell
checks for new mail.

Like an alias, a shell variable is a name that has a value
associated with it. bash keeps track of several built-in
shell variables; shell programmers can add their own. By
convention, built-in variables should have names in all
capital letters. bash does, however, have two
exceptions.[7] The syntax for defining variables is
somewhat similar to the syntax for aliases:

varname=value

There must be no space on either side of the equal sign,
and if the value is more than one word, it must be
surrounded by quotes. To use the value of a variable in a
command, precede its name by a dollar sign ($).

You can delete a variable with the command unset
varname. Normally this isn't useful, since all variables
that don't exist are assumed to be null, i.e., equal to the
empty string "". But if you use the set option nounset,
which causes the shell to indicate an error when it

203

encounters an undefined variable, then you may be
interested in unset.

The easiest way to check a variable's value is to use the
echo built-in command. All echo does is print its
arguments, but not until the shell has evaluated them.
This includes—among other things that will be discussed
later—taking the values of variables and expanding
filename wildcards. So, if the variable wonderland has
the value alice, typing:

$ echo "$wonderland"
will cause the shell to simply print alice. If the variable is
undefined, the shell will print a blank line. A more
verbose way to do this is:

$ echo "The value of \$
varname
is \"$
varname
\"."

The first dollar sign and the inner double quotes are
backslash-escaped (i.e., preceded with \ so the shell
doesn't try to interpret them—see Chapter 1) so they
appear literally in the output, which for the above
example would be:

The value of $wonderland is "alice".

204

Variables and Quoting

Notice that we used double quotes around variables (and
strings containing them) in these echo examples. In
Chapter 1, we said that some special characters inside
double quotes are still interpreted, while none are
interpreted inside single quotes.

A special character that "survives" double quotes is the
dollar sign—meaning that variables are evaluated. It's
possible to do without the double quotes in some cases;
for example, we could have written the above echo
command this way:

$ echo The value of \$
varname
is \"$
varname\".

But double quotes are more generally correct. Here's why.
Suppose we did this:

$ fred='Four spaces between these words.'
Then if we entered the command echo $fred, the result
would be:

Four spaces between these words.

What happened to the extra spaces? Without the double
quotes, the shell splits the string into words after
substituting the variable's value, as it normally does when

205

it processes command lines. The double quotes
circumvent this part of the process (by making the shell
think that the whole quoted string is a single word).

Therefore the command echo "$fred" prints this:

Four spaces between these words.

The distinction between single and double quotes
becomes particularly important when we start dealing
with variables that contain user or file input later on.

Double quotes also allow other special characters to
work, as we'll see in Chapter 4, Chapter 6, and Chapter 7.
But for now, we'll revise the "When in doubt, use single
quotes" rule in Chapter 1 by adding, "...unless a string
contains a variable, in which case you should use double
quotes."

206

Built-In Variables

As with options, some built-in shell variables are
meaningful to general UNIX users, while others are
arcana for hackers. We'll look at the more generally
useful ones here, and we'll save some of the more obscure
ones for later chapters. Again, Appendix B contains a
complete list.

Editing mode variables

Several shell variables relate to the command-line editing
modes that we saw in the previous chapter. These are
listed in Table 3-4.

Table 3-4. Editing mode variables

Variable Meaning

HISTCMD The history number of the
current command.

207

Variable Meaning

HISTCONTROL

A list of patterns, separated by
colons (:), which can have the
following values. ignorespace:
lines beginning with a space are
not entered into the history list.
ignoredups: lines matching the
last history line are not entered.
erasedups: all previous lines
matching the current line are
removed from the history list
before the line is saved.
ignoreboth: enables both
ignorespace and ignoredups. [8]

HISTIGNORE

A list of patterns, separated by
colons (:), used to decide which
command lines to save in the
history list. Patterns are
considered to start at the
beginning of the command line
and must fully specify the line,
i.e., no wildcard (*) is implicitly
appended. The patterns are
checked against the line after
HISTCONTROL is applied.

208

Variable Meaning

An ampersand (&) matches the
previous line. An explicit &
may be generated by escaping it
with a backslash.[9]

HISTFILE
Name of history file in which
the command history is saved.
The default is ~/.bash_history.

HISTFILESIZE

The maximum number of lines
to store in the history file. The
default is 500. When this
variable is assigned a value, the
history file is truncated, if
necessary, to the given number
of lines.

HISTSIZE

The maximum number of
commands to remember in the
command history. The default is
500.

209

Variable Meaning

HISTTIMEFORMAT

If it is set and not null, its value
is used as a format string for
strftime(3) to print the time
stamp associated with each
history entry displayed by the
history command. Time stamps
are written to the history file so
they may be preserved across
shell sessions.[10]

FCEDIT Pathname of the editor to use
with the fc command.

[8] history_control is synonymous with HISTCONTROL
in versions of bash prior to 2.0. Versions prior to 1.14
only define history_control. ignoreboth is not available
in bash versions prior to 1.14. HISTCONTROL is a
colon-separated list, and erasedups has been added in
bash 3.0 and later.

[9] This variable is not available in versions of bash
prior to 2.0.

210

Variable Meaning

[10] This variable is not available in versions of bash
prior to 3.0.

In the previous chapter, we saw how bash numbers
commands. To find out the current command number in
an interactive shell, you can use the HISTCMD. Note
that if you unset HISTCMD, it will lose its special
meaning, even if you subsequently set it again.

We also saw in the last chapter how bash keeps the
history list in memory and saves it to a file when you exit
a shell session. The variables HISTFILESIZE and
HISTSIZE allow you to set the maximum number of
lines that the shell saves in the history file, and the
maximum number of lines to "remember" in the history
list, i.e., the lines that it displays with the history
command.

Suppose you wanted to maintain a small history file in
your home directory. By setting HISTFILESIZE to 100,
you immediately cause the history file to allow a
maximum of 100 lines. If it is already larger than the size
you specify, it will be truncated.

HISTSIZE works in the same way, but only on the
history that the current shell has in memory. When you

211

exit an interactive shell, HISTSIZE will be the maximum
number of lines saved in your history file. If you have
already set HISTFILESIZE to be less than HISTSIZE,
the saved list will be truncated.

You can also cut down on the size of your history file and
history list by use of the HISTCONTROL variable. This
is a colon-separated list of values. If it includes
ignorespace, any commands that you type that start with
a space won't appear in the history. Even more useful is
the ignoredups option. This discards consecutive entries
from the history list that are duplicated. Suppose you
want to monitor the size of a file with ls as it is being
created. Normally, every time you type ls it will appear in
your history. By setting HISTCONTROL to
ignoredups, only the first ls will appear in the history.

The variable HISTIGNORE allows you to specify a list
of patterns which the command line is checked against. If
the command line matches one of the patterns, it is not
entered into the history list. You can also request that it
ignore duplicates by using the pattern &.

For example, suppose you didn't want any command
starting with l, nor any duplicates, to appear in the
history. Setting HISTIGNORE to l*:& will do just that.
Just as with other pattern matching we have seen, the
wildcard after the l will match any command line starting
with that letter.

212

Another useful variable is HISTTIMEFORMAT, which
prepends a time stamp to each history entry showing
when the command was executed. If it is unset or the
value is null then no time stamp is written. If a format is
given then time stamps are inserted using the specified
format as part of the history and are shown with the
history command.

The time stamp formats are shown in Table 3-5. Some of
the results will be displayed using the particular format
for the underlying locale, e.g., weekday names will be
translated into the language being used on the system.

Table 3-5. Time stamp formats

Format Replaced by

%a The locale's abbreviated weekday name

%A The locale's full weekday name

%b The locale's abbreviated month name

%B The locale's full month name

213

Format Replaced by

%c The locale's appropriate date and time
representation

%C
The century number (the year divided by 100
and truncated to an integer) as a decimal
number [00-99]

%d The day of the month as a decimal number
[01-31]

%D The date in American format; the same value
as %m/%d/%y.

%e The day of the month as a decimal number
[1-31]; a single digit is preceded by a space

%h The same as %b

%H The hour (24-hour clock) as a decimal
number [00-23]

214

Format Replaced by

%I The hour (12-hour clock) as a decimal
number [01-12]

%j The day of the year as a decimal number
[001-366]

%m The month as a decimal number [01-12]

%M The minute as a decimal number [00-59]

%n A newline character

%p The locale's equivalent of either a.m. or p.m

%r
The time in a.m. and p.m. notation; in the
POSIX locale this is equivalent to
%I:%M:%S %p

%R The time in 24-hour notation (%H:%M)

215

Format Replaced by

%S The second as a decimal number [00-61]

%t A tab character

%T The time (%H:%M:%S)

%u The weekday as a decimal number [1-7], with
1 representing Monday

%U
The week number of the year (Sunday as the
first day of the week) as a decimal number
[00-53]

%V

The week number of the year (Monday as the
first day of the week) as a decimal number
[01-53]; if the week containing 1 January has
four or more days in the new year, then it is
considered week 1—otherwise, it is the last
week of the previous year, and the next week
is week 1

216

Format Replaced by

%w The weekday as a decimal number [0-6], with
0 representing Sunday

%W

The week number of the year (Monday as the
first day of the week) as a decimal number
[00-53]; all days in a new year preceding the
first Monday are considered to be in week 0

%x The locale's appropriate date representation

%X The locale's appropriate time representation

%y The year without century as a decimal number
[00-99]

%Y The year with century as a decimal number

%Z The timezone name or abbreviation, or by
nothing if no timezone information exists

217

Format Replaced by

%% %

If you wanted to have the date and time with each history
entry, you could put:

HISTTIMEFORMAT="%y/%m/%d %T "

then the output of the history command would look
something like:

...
78 04/11/26 17:14:05 HISTTIMEFORMAT="%y/%m/%d %T "
79 04/11/26 17:14:08 ls -l
80 04/11/26 17:14:09 history

If the history has never had a date format set before then
all of the entries prior to setting the variable will get the
time stamp of the time the variable was set. If you set
HISTTIMEFORMAT to null and then set it to a format,
the previous time stamps are retained and displayed in the
new format.

218

Mail variables

Since the mail program is not running all the time, there
is no way for it to inform you when you get new mail;
therefore the shell does this instead.[11] The shell can't
actually check for incoming mail, but it can look at your
mail file periodically and determine whether the file has
been modified since the last check. The variables listed in
Table 3-6 let you control how this works.

Table 3-6. Mail variables

Variable Meaning

MAIL Name of file to check for incoming
mail

MAILCHECK How often, in seconds, to check for
new mail (default 60 seconds)

MAILPATH List of filenames, separated by colons
(:), to check for incoming mail

219

Under the simplest scenario, you use the standard UNIX
mail program, and your mail file is /usr/mail/yourname or
something similar. In this case, you would just set the
variable MAIL to this filename if you want your mail
checked:

MAIL=/usr/mail/yourname

If your system administrator hasn't already done it for
you, put a line like this in your .bash_profile.

However, some people use nonstandard mailers that use
multiple mail files; MAILPATH was designed to
accommodate this. bash will use the value of MAIL as
the name of the file to check, unless MAILPATH is set;
in which case, the shell will check each file in the
MAILPATH list for new mail. You can use this
mechanism to have the shell print a different message for
each mail file: for each mail filename in MAILPATH,
append a question mark followed by the message you
want printed.

For example, let's say you have a mail system that
automatically sorts your mail into files according to the
username of the sender. You have mail files called /usr/
mail/you/martin, /usr/mail/you/geoffm, /usr/mail/you/
paulr, etc. You define your MAILPATH as follows:

MAILPATH=/usr/mail/you/martin:/usr/mail/you/geoffm:\
/usr/mail/you/paulr

220

If you get mail from Martin Lee, the file /usr/mail/you/
martin will change. bash will notice the change within
one minute and print the message:

You have new mail in /usr/mail/you/martin

If you are in the middle of running a command, the shell
will wait until the command finishes (or is suspended) to
print the message. To customize this further, you could
define MAILPATH to be:

MAILPATH="\
/usr/mail/you/martin?You have mail from Martin.:\
/usr/mail/you/geoffm?Mail from Geoff has arrived.:\
/usr/mail/you/paulr?There is new mail from Paul."

The backslashes at the end of each line allow you to
continue your command on the next line. But be careful:
you can't indent subsequent lines. Now, if you get mail
from Martin, the shell will print:

You have mail from Martin.

You can also use the variable $_ in the message to print
the name of the current mail file. For example:

MAILPATH='/usr/mail/you?You have some new mail in $_'

When new mail arrives, this will print the line:

You have some new mail in /usr/mail/you

The ability to receive notification of mail can be switched
on and off by using the mailwarn option to the shopt
command.

221

Prompting variables

If you have seen enough experienced UNIX users at
work, you may already have realized that the shell's
prompt is not engraved in stone. Many of these users
have all kinds of things encoded in their prompts. It is
possible to put useful information into the prompt,
including the date and the current directory. We'll give
you some of the information you need to modify your
own here; the rest will come in the next chapter.

Actually , bash uses four prompt strings. They are stored
in the variables PS1, PS2, PS3, and PS4. The first of
these is called the primary prompt string; it is your usual
shell prompt, and its default value is "\s-\v\$ ".[12] Many
people like to set their primary prompt string to
something containing their login name. Here is one way
to do this:

PS1="\u--> "

The \u tells bash to insert the name of the current user
into the prompt string. If your user name is alice, your
prompt string will be "alice—>". If you are a C shell user
and, like many such people, are used to having a history
number in your prompt string, bash can do this similarly
to the C shell: if the sequence \! is used in the prompt
string, it will substitute the history number. Thus, if you
define your prompt string to be:

222

PS1="\u \!--> "

then your prompts will be like alice 1—>, alice 2—>,
and so on.

But perhaps the most useful way to set up your prompt
string is so that it always contains your current directory.
This way, you needn't type pwd to remember where you
are. Here's how:

PS1="\w--> "

Table 3-7 lists the prompt customizations that are
available.[13]

Table 3-7. Prompt string customizations

Command Meaning

\a The ASCII bell character (007)

\A The current time in 24-hour HH:MM
format

\d The date in "Weekday Month Day" format

223

Command Meaning

\D
{format}

The format is passed to strftime(3) and the
result is inserted into the prompt string; an
empty format results in a locale-specific
time representation; the braces are required

\e The ASCII escape character (033)

\H The hostname

\h The hostname up to the first "."

\j The number of jobs currently managed by
the shell

\l The basename of the shell's terminal
device name

\n A carriage return and line feed

224

Command Meaning

\r A carriage return

\s The name of the shell

\T The current time in 12-hour HH:MM:SS
format

\t The current time in HH:MM:SS format

\@ The current time in 12-hour a.m./p.m.
format

\u The username of the current user

\v The version of bash (e.g., 2.00)

\V The release of bash; the version and
patchlevel (e.g., 2.00.0)

225

Command Meaning

\w The current working directory

\W The basename of the current working
directory

\# The command number of the current
command

\! The history number of the current
command

\$ If the effective UID is 0, print a #,
otherwise print a $

\nnn Character code in octal

\\ Print a backslash

226

Command Meaning

\[
Begin a sequence of non-printing
characters, such as terminal control
sequences

\] End a sequence of non-printing characters

PS2 is called the secondary prompt string; its default
value is >. It is used when you type an incomplete line
and hit RETURN, as an indication that you must finish
your command. For example, assume that you start a
quoted string but don't close the quote. Then if you hit
RETURN, the shell will print > and wait for you to finish
the string:

$ echo "This is a long line,
PS1 for the command

> which is terminated down here"
PS2 for the continuation
$
PS1 for the next command

PS3 and PS4 relate to shell programming and debugging.
They will be explained in Chapter 5, and Chapter 9.

227

Command search path

Another important variable is PATH, which helps the
shell find the commands you enter.

As you probably know, every command you use is
actually a file that contains code for your machine to
run.[14] These files are called executable files or just
executables for short. They are stored in various
directories. Some directories, like /bin or /usr/bin, are
standard on all UNIX systems; some depend on the
particular version of UNIX you are using; some are
unique to your machine; if you are a programmer, some
may even be your own. In any case, there is no reason
why you should have to know where a command's
executable file is in order to run it.

That is where PATH comes in. Its value is a list of
directories that the shell searches every time you enter a
command;[15] the directory names are separated by
colons (:), just like the files in MAILPATH.

For example, if you type echo $PATH, you will see
something like this:

/bin:/usr/bin:/usr/local/bin:/usr/X386/bin

Why should you care about your path? There are two
main reasons. First, once you have read the later chapters
of this book and you try writing your own shell programs,

228

you will want to test them and eventually set aside a
directory for them. Second, your system may be set up so
that certain restricted commands' executable files are kept
in directories that are not listed in PATH. For example,
there may be a directory /usr/games in which there are
executables that are verboten during regular working
hours.

Therefore you may want to add directories to your
PATH. Let's say you have created a bin directory under
your login directory, which is /home/you, for your own
shell scripts and programs. To add this directory to your
PATH so that it is there every time you log in, put this
line in your .bash_profile:

PATH=$PATH":/home/you/bin"

This line sets PATH to whatever it was before, followed
immediately by a colon and /home/you/bin.

This is the safe way of doing it. When you enter a
command, the shell searches directories in the order they
appear in PATH until it finds an executable file.
Therefore, if you have a shell script or program whose
name is the same as an existing command, the shell will
use the existing command—unless you type in the
command's full pathname to make it clear. For example,
if you have created your own version of the more
command in the above directory and your PATH is set up
as in the last example, you will need to type /home/you/
bin/more (or just ~/bin/more) to get your version.

229

The more reckless way of resetting your path is to put
your own directory before the other directories:

PATH="/home/you/bin:"$PATH

This is unsafe because you are trusting that your own
version of the more command works properly. But it is
also risky for a more important reason: system security. If
your PATH is set up in this way, you leave open a "hole"
that is well known to computer crackers and mischief
makers: they can install "Trojan horses" and do other
things to steal files or do damage. (See Chapter 10 for
more details.) Therefore, unless you have complete
control of (and confidence in) everyone who uses your
system, use the first of the two methods of adding your
own command directory.

If you need to know which directory a command comes
from, you need not look at directories in your PATH
until you find it. The shell built-in command type prints
the full pathname of the command you give it as
argument, or just the command's name and its type if it's a
built-in command itself (like cd), an alias, or a function
(as we'll see in Chapter 4).

230

Command hashing

You may be thinking that having to go and find a
command in a large list of possible places would take a
long time, and you'd be right. To speed things up, bash
uses what is known as a hash table.

Every time the shell goes and finds a command in the
search path, it enters it in the hash table. If you then use
the command again, bash first checks the hash table to
see if the command is listed. If it is, it uses the path given
in the table and executes the command; otherwise, it just
has to go and look for the command in the search path.

You can see what is currently in the hash table with the
command hash:

$ hash
hits command

2 /bin/cat
1 /usr/bin/stat
2 /usr/bin/less
1 /usr/bin/man
2 /usr/bin/apropos
2 /bin/more
1 /bin/ln
3 /bin/ls
1 /bin/ps
2 /bin/vi

231

This not only shows the hashed commands, but how
many times they have been executed (the hits) during the
current login session.

Supplying a command name to hash forces the shell to
look up the command in the search path and enter it in the
hash table. You can also make bash "forget" what is in
the hash table by using hash -r to remove everything in
the table or hash -d name to remove the specified
name.[16] Another option, -p, allows you to enter a
command into the hash table, even if the command
doesn't exist.[17]

Command hashing can be turned on and off with the
hashall option to set. In general use, there shouldn't be
any need to turn it off.

Don't be too concerned about the details of hashing. The
command hashing and lookup is all done by bash without
you knowing it's taking place.

232

Directory search path and
variables

CDPATH is a variable whose value, like that of PATH,
is a list of directories separated by colons. Its purpose is
to augment the functionality of the cd built-in command.

By default, CDPATH isn't set (meaning that it is null),
and when you type cd dirname, the shell will look in the
current directory for a subdirectory that is called
dirname.[18] If you set CDPATH, you give the shell a list
of places to look for dirname; the list may or may not
include the current directory.

Here is an example. Consider the alias for the long cd
command from earlier in this chapter:

alias cdvoy='cd sipp/demo/animation/voyager'

Now suppose there were a few directories under this
directory to which you need to go often; they are called
src, bin, and doc. You define your CDPATH like this:

CDPATH=:~/sipp/demo/animation/voyager

In other words, you define your CDPATH to be the
empty string (meaning the current directory) followed by
~/sipp/demo/animation/voyager.

233

With this setup, if you type cd doc, then the shell will
look in the current directory for a (sub)directory called
doc. Assuming that it doesn't find one, it looks in the
directory ~/sipp/demo/animation/voyager. The shell finds
the doc directory there, so you go directly there.

If you often find yourself going to a specific group of
directories as you work on a particular project, you can
use CDPATH to get there quickly. Note that this feature
will only be useful if you update it whenever your work
habits change.

bash provides another shorthand mechanism for referring
to directories; if you set the shell option cdable_vars
using shopt,[19] any argument supplied to the cd
command that is not a directory is assumed to be a
variable.

We might define the variable anim to be ~/sipp/demo/
animation/voyager. If we set cdable_vars and then type:

cd anim

the current directory will become ~/sipp/demo/animation/
voyager.

234

Miscellaneous variables

We have covered the shell variables that are important
from the standpoint of customization. There are also
several that serve as status indicators and for various
other miscellaneous purposes. Their meanings are
relatively straightforward; the more basic ones are
summarized in Table 3-8.

Table 3-8. Status variables

Variable Meaning

HOME Name of your home (login)
directory

SECONDS Number of seconds since the shell
was invoked

BASH Pathname of this instance of the
shell you are running

235

Variable Meaning

BASH_VERSION The version number of the shell
you are running

BASH_VERSINFO An array of version information
for the shell you are running

PWD Current directory

OLDPWD Previous directory before the last
cd command

The shell sets the values of these variables, except
HOME (which is set by the login process: login, rshd,
etc.). The first five are set at login time, the last two
whenever you change directories. Although you can also
set their values, just like any other variables, it is difficult
to imagine any situation where you would want to. In the
case of SECONDS, if you set it to a new value it will
start counting from the value you give it, but if you unset
SECONDS it will lose its special meaning, even if you
subsequently set it again.

236

[7] Versions prior to 2.0 have many more lowercase
built-in variables. Most of these are now obsolete, the
functionality having been moved to the shopt command.

[11] BSD UNIX users should note that the biff command
on those systems does a better job of informing you about
new mail; while bash only prints "you have new mail"
messages right before it prints command prompts, biff can
do so at any time.

[12] In versions of bash prior to 2.0, the default is "bash\$
".

[13] \a, \e, \H, \T, \@, \v, and \V are not available in
versions prior to 2.0. \D was introduced in bash 2.05b.

[14] Unless it's a built-in command (one of those shown in
boldface, like cd and echo), in which case the code is
simply part of the executable file for the entire shell.

[15] Unless the command name contains a slash (/), in
which case the search does not take place.

[16] The -d option is not available in versions of bash
prior to 2.05b.

[17] The -p option is not available in versions of bash
prior to 2.0.

[18] This search is disabled when dirname starts with a
slash. It is also disabled when dirname starts with ./ or ../.

237

[19] In versions of bash prior to 2.0, cdable_vars is a
shell variable that you can set and unset.

238

Customization and
Subprocesses
Some of the variables discussed above are used by
commands you may run—as opposed to the shell
itself—so that they can determine certain aspects of your
environment. The majority, however, are not even known
outside the shell.

This dichotomy begs an important question: which shell
"things" are known outside the shell, and which are only
internal? This question is at the heart of many
misunderstandings about the shell and shell
programming. Before we answer, we'll ask it again in a
more precise way: which shell "things" are known to
subprocesses? Remember that whenever you enter a
command, you are telling the shell to run that command
in a subprocess; furthermore, some complex programs
may start their own subprocesses.

Now for the answer, which (like many UNIX concepts) is
unfortunately not as simple as you might like. A few
things are known to subprocesses, but the reverse is not
true: subprocesses can never make these things known to
the processes that created them.

Which things are known depends on whether the
subprocess in question is a bash program (see Chapter 4)

239

or an interactive shell. If the subprocess is a bash
program, then it's possible to propagate nearly every type
of thing we've seen in this chapter—options and
variables—plus a few we'll see later.

Environment Variables

By default, only one kind of thing is known to all kinds of
subprocesses: a special class of shell variables called
environment variables. Some of the built-in variables we
have seen are actually environment variables: HOME,
MAIL, PATH, and PWD.

It should be clear why these and other variables need to
be known by subprocesses. For example, text editors like
vi and emacs need to know what kind of terminal you are
using; the environment variable TERM is their way of
determining this. As another example, most UNIX mail
programs allow you to edit a message with your favorite
text editor. How does mail know which editor to use? The
value of EDITOR (or sometimes VISUAL).

Any variable can become an environment variable. First
it must be defined as usual; then it must be exported with
the command:[20]

export varnames

240

(varnames can be a list of variable names separated by
blanks). You can combine variable assignment and the
export into one statement:

export wonderland=alice

It is also possible to define variables to be in the
environment of a particular subprocess (command) only,
by preceding the command with the variable assignment,
like this:

varname=value command

You can put as many assignments before the command as
you want.[21] For example, assume that you're using the
emacs editor. You are having problems getting it to work
with your terminal, so you're experimenting with different
values of TERM. You can do this most easily by entering
commands that look like:

TERM=trythisone
emacs
filename

emacs will have trythisone defined as its value of TERM,
yet the environment variable in your shell will keep
whatever value (if any) it had before. This syntax is
surprisingly useful, but not very widely used; we won't
see it much throughout the remainder of this book.

Nevertheless, environment variables are important. Most
.bash_profile files include definitions of environment

241

variables; the sample built-in .bash_profile earlier in this
chapter contained six such definitions:

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin
SHELL=/bin/bash
MANPATH=/usr/man:/usr/X11/man
EDITOR=/usr/bin/vi
PS1='\h:\w\$ '
PS2='> '
export EDITOR

You can find out which variables are environment
variables and what their values are by typing export
without arguments or by using the -p option to the
command.

Some environment variable names have been used by so
many applications that they have become standard across
many shell environments. These variables are not built
into bash, although some shells, such as the Korn shell,
have them as built-ins. Table 3-9 lists the ones you are
most likely to come across.

Table 3-9. Standard variables

Variable Meaning

COLUMNS The number of columns your display
has[22]

242

Variable Meaning

EDITOR Pathname of your text editor

LINES The number of lines your display has

SHELL Pathname of the shell you are running

TERM The type of terminal that you are using

[22] Note that bash will set COLUMNS and LINES
during certain situations, such as when the window the
shell is in changes in size.

You may well find that some of these already exist in
your own environment, most likely set from the system
/etc/profile file (see Chapter 10). You can define them
yourself in your .bash_profile and export them, as we did
earlier.

243

Terminal types

The variable TERM is vitally important for any program
that uses your entire screen or window, like a text editor.
Such programs include all screen editors (such as vi and
emacs), more, and countless third-party applications.

Because users are spending more and more time within
programs, and less and less using the shell itself, it is
extremely important that your TERM is set correctly. It's
really your system administrator's job to help you do this
(or to do it for you), but in case you need to do it yourself,
here are a few guidelines.

The value of TERM must be a short character string with
lowercase letters that appears as a filename in the
terminfo database.[23] This database is a two-tiered
directory of files under the root directory /usr/lib/
terminfo. This directory contains subdirectories with
single-character names; these in turn contain files of
terminal information for all terminals whose names begin
with that character. Each file describes how to tell the
terminal in question to do certain common things like
position the cursor on the screen, go into reverse video,
scroll, insert text, and so on. The descriptions are in
binary form (i.e., not readable by humans).

Names of terminal description files are the same as that of
the terminal being described; sometimes an abbreviation
is used. For example, the DEC VT100 has a description
in the file /usr/lib/terminfo/v/vt100. An xterm terminal

244

window under the X Window System has a description in
/usr/lib/terminfo/x/xterm.

Sometimes your UNIX software will set up TERM
incorrectly; this usually happens for X terminals and
PC-based UNIX systems. Therefore, you should check
the value of TERM by typing echo $TERM before
going any further. If you find that your UNIX system isn't
setting the right value for you (especially likely if your
terminal is of a different make from that of your
computer), you need to find the appropriate value of
TERM yourself.

The best way to find the TERM value—if you can't find
a local guru to do it for you—is to guess the terminfo
name and search for a file of that name under /usr/lib/
terminfo by using ls. For example, if your terminal is a
Hewlett-Packard 70092, you could try:

$ cd /usr/lib/terminfo
$ ls 7/7*

If you are successful, you will see something like this:

70092 70092A 70092a

In this case, the three names are likely to be synonyms for
(links to) the same terminal description, so you could use
any one as a value of TERM. In other words, you could
put any of these three lines in your .bash_profile:

245

TERM=70092
TERM=70092A
TERM=70092a

If you aren't successful, ls will print an error message, and
you will have to make another guess and try again. If you
find that terminfo contains nothing that resembles your
terminal, all is not lost. Consult your terminal's manual to
see if the terminal can emulate a more popular model;
nowadays the odds for this are excellent.

Conversely, terminfo may have several entries that relate
to your terminal, for submodels, special modes, etc. If
you have a choice of which entry to use as your value of
TERM, we suggest you test each one out with your text
editor or any other screen-oriented programs you use and
see which one works best.

The process is much simpler if you are using a
windowing system, in which your "terminals" are logical
portions of the screen rather than physical devices. In this
case, operating system-dependent software was written to
control your terminal window(s), so the odds are very
good that if it knows how to handle window resizing and
complex cursor motion, then it is capable of dealing with
simple things like TERM. The X Window System, for
example, automatically sets xterm as its value for TERM
in an xterm terminal window.

246

Other common variables

Some programs, such as mail, need to know what type of
editor you would like to use. In most cases they will
default to a common editor like ed unless you set the
EDITOR variable to the path of your favorite editor and
export it in your .bash_profile.

Some programs run shells as subprocesses within
themselves (e.g., many mail programs and the emacs
editor's shell mode); by convention they use the SHELL
variable to determine which shell to use. SHELL is
usually set by the process that invokes the login shell;
usually login or something like rshd if you are logged in
remotely. bash sets it only if it hasn't already been set.

You may have noticed that the value of SHELL looks the
same as BASH. These two variables serve slightly
different purposes. BASH is set to the pathname of the
current shell, whether it is an interactive shell or not.
SHELL, on the other hand, is set to the name of your
login shell, which may be a completely different shell.

COLUMNS and LINES are used by screen-oriented
editors like vi. In most cases a default is used if they are
undefined, but if you are having display problems with
screen-oriented applications then you should check these
variables to see if they are correct.

247

The Environment File

Although environment variables will always be known to
subprocesses, the shell must be explicitly told which
other variables, options, aliases, and so on, are to be
communicated to subprocesses. The way to do this is to
put all such definitions into the environment file. bash's
default environment file is the .bashrc file that we
touched on briefly at the beginning of this chapter.

Remember, if you take your definitions out of
.bash_profile and put them in .bashrc, you will have to
have the line source .bashrc at the end of your
.bash_profile so that the definitions become available to
the login shell.

The idea of the environment file comes from the C shell's
.cshrc file. This is reflected in the choice of the name
.bashrc. The rc suffix for initialization files is practically
universal throughout the UNIX world.[24]

As a general rule, you should put as few definitions as
possible in .bash_profile and as many as possible in your
environment file. Because definitions add to rather than
take away from an environment, there is little chance that
they will cause something in a subprocess not to work
properly. (An exception might be name clashes if you go
overboard with aliases.)

248

The only things that really need to be in .bash_profile are
environment variables and their exports and commands
that aren't definitions but actually run or produce output
when you log in. Option and alias definitions should go
into the environment file. In fact, there are many bash
users who have tiny .bash_profile files, e.g.:

stty stop ^S intr ^C erase ^?
date
source .bashrc

Although this is a small .bash_profile, this user's
environment file could be huge.

[20] Unless automatic exporting has been turned on by set
-a or set -o allexport, in which case all variables that are
assigned to will be exported.

[21] There is an obscure option, set -k, that lets you put
this type of environment variable definition anywhere on
the command line, not just at the beginning.

[23] Note that most modern UNIX systems now use a
database rather than a flat file for the terminal
descriptions.

[24] According to the folklore, it stands for "run
commands" and has its origins in old DEC operating
systems.

249

Customization Hints
You should feel free to try any of the techniques
presented in this chapter. The best strategy is to test
something out by typing it into the shell during your login
session; then if you decide you want to make it a
permanent part of your environment, add it to your
.bash_profile.

A nice, painless way to add to your .bash_profile without
going into a text editor makes use of the echo command
and one of bash's editing modes. If you type a
customization command in and later decide to add it to
your .bash_profile, you can recall it via CTRL-P or
CTRL-R (in emacs-mode) or j, -, or ? (vi-mode). Let's
say the line is:

PS1="\u \!--> "

After you recall it, edit the line so that it is preceded by an
echo command, surrounded by single quotes, and
followed by an I/O redirector that (as you will see in
Chapter 7) appends the output to ~/.bash_profile:

$ echo 'PS1="\u \!--> " ' >> ~/.bash_profile
Remember that the single quotes are important because
they prevent the shell from trying to interpret things like
dollar signs, double quotes, and exclamation points. Also

250

make sure that you use a double right-caret (>>). A single
one will overwrite the file rather than appending to it.

251

Chapter 4. Basic Shell
Programming
If you have become familiar with the customization
techniques we presented in the previous chapter, you
have probably run into various modifications to your
environment that you want to make but can't—yet. Shell
programming makes these possible.

bash has some of the most advanced programming
capabilities of any command interpreter of its type.
Although its syntax is nowhere near as elegant or
consistent as that of most conventional programming
languages, its power and flexibility are comparable. In
fact, bash can be used as a complete environment for
writing software prototypes.

Some aspects of bash programming are really extensions
of the customization techniques we have already seen,
while others resemble traditional programming language
features. We have structured this chapter so that if you
aren't a programmer, you can read this chapter and do
quite a bit more than you could with the information in
the previous chapter. Experience with a conventional
programming language like Pascal or C is helpful (though
not strictly necessary) for subsequent chapters.
Throughout the rest of the book, we will encounter

252

occasional programming problems, called tasks, whose
solutions make use of the concepts we cover.

Shell Scripts and
Functions
A script (a file that contains shell commands) is a shell
program. Your .bash_profile and environment files,
discussed in the previous chapter, are shell scripts.

You can create a script using the text editor of your
choice. Once you have created one, there are two ways to
run it. One, which we have already covered, is to type
source scriptname. This causes the commands in the
script to be read and run as if you typed them in.

The second way to run a script is simply to type its name
and hit RETURN, just as if you were invoking a built-in
command. This, of course, is the more convenient way.
This method makes the script look just like any other
UNIX command, and in fact several "regular" commands
are implemented as shell scripts (i.e., not as programs
originally written in C or some other language), including
spell, man on some systems, and various commands for
system administrators. The resulting lack of distinction
between "user command files" and "built-in commands"
is one factor in UNIX's extensibility and, hence, its
favored status among programmers.

253

You can run a script by typing its name only if the
directory where the script is located is in your command
search path, or . (the current directory) is part of your
command search path, i.e., the script's directory path (as
discussed in Chapter 3). If these aren't in your path, you
must type ./scriptname, which is really the same thing as
typing the script's absolute pathname (see Chapter 1).

Before you can invoke the shell script by name, you must
also give it "execute" permission. If you are familiar with
the UNIX filesystem, you know that files have three types
of permissions (read, write, and execute) and that those
permissions apply to three categories of user (the file's
owner, a group of users, and everyone else). Normally,
when you create a file with a text editor, the file is set up
with read and write permission for you and read-only
permission for everyone else.

Therefore you must give your script execute permission
explicitly, by using the chmod command. The simplest
way to do this is to type:

$ chmod +x
scriptname

Your text editor will preserve this permission if you make
subsequent changes to your script. If you don't add
execute permission to the script and you try to invoke it,
the shell will print the message:

scriptname: Permission denied

254

But there is a more important difference between the two
ways of running shell scripts. While using source causes
the commands in the script to be run as if they were part
of your login session, the "just the name" method causes
the shell to do a series of things. First, it runs another
copy of the shell as a subprocess; this is called a subshell.
The subshell then takes commands from the script, runs
them, and terminates, handing control back to the parent
shell.

Figure 4-1 shows how the shell executes scripts. Assume
you have a simple shell script called alice that contains
the commands hatter and gryphon. In .a, typing source
alice causes the two commands to run in the same shell,
just as if you had typed them in by hand. .b shows what
happens when you type just alice: the commands run in
the subshell while the parent shell waits for the subshell
to finish.

You may find it interesting to compare this with the
situation in .c, which shows what happens when you type
alice &. As you will recall from Chapter 1, the & makes
the command run in the background, which is really just
another term for "subprocess." It turns out that the only
significant difference between .c and .b is that you have
control of your terminal or workstation while the
command runs—you need not wait until it finishes before
you can enter further commands.

255

Figure 4-1. Ways to run a shell script

There are many ramifications to using subshells. An
important one is that the exported environment variables
that we saw in the last chapter (e.g., TERM, EDITOR,
PWD) are known in subshells, whereas other shell
variables (such as any that you define in your
.bash_profile without an export statement) are not.

Other issues involving subshells are too complex to go
into now; see Chapter 7 and Chapter 8 for more details
about subshell I/O and process characteristics,

256

respectively. For now, just bear in mind that a script
normally runs in a subshell.

Functions

bash's function feature is an expanded version of a similar
facility in the System V Bourne shell and a few other
shells. A function is sort of a script-within-a-script; you
use it to define some shell code by name and store it in
the shell's memory, to be invoked and run later.

Functions improve the shell's programmability
significantly, for two main reasons. First, when you
invoke a function, it is already in the shell's memory;
therefore a function runs faster. Modern computers have
plenty of memory, so there is no need to worry about the
amount of space a typical function takes up. For this
reason, most people define as many commonly used
functions as possible rather than keep lots of scripts
around.

The other advantage of functions is that they are ideal for
organizing long shell scripts into modular "chunks" of
code that are easier to develop and maintain. If you aren't
a programmer, ask one what life would be like without
functions (also called procedures or subroutines in other
languages) and you'll probably get an earful.

To define a function, you can use either one of two forms:

257

function functname
{
shell commands
}

or:

functname
()

{
shell commands

}
There is no functional difference between the two. We
will use both forms in this book. You can also delete a
function definition with the command unset -f functname.

When you define a function, you tell the shell to store its
name and definition (i.e., the shell commands it contains)
in memory. If you want to run the function later, just type
in its name followed by any arguments, as if it were a
shell script.

You can find out what functions are defined in your login
session by typing declare -f. The shell will print not just
the names but the definitions of all functions, in
alphabetical order by function name. Since this may
result in long output, you might want to pipe the output
through more or redirect it to a file for examination with a
text editor. If you just want to see the names of the
functions, you can use declare -F.[1] We will look at
declare in more detail in Chapter 6.

258

Apart from the advantages, there are two important
differences between functions and scripts. First, functions
do not run in separate processes, as scripts do when you
invoke them by name; the "semantics" of running a
function are more like those of your .bash_profile when
you log in or any script when invoked with the source
command. Second, if a function has the same name as a
script or executable program, the function takes
precedence.

This is a good time to show the order of precedence for
the various sources of commands when you type a
command to the shell:

1. Aliases

2. Keywords such as function and several others,
like if and for, which we will see in Chapter 5

3. Functions

4. Built-ins like cd and type

5. Scripts and executable programs, for which the
shell searches in the directories listed in the
PATH environment variable

Thus, an alias takes precedence over a function or a script
with the same name. You can, however, change the order
of precedence by using the built-ins command, builtin,
and enable. This allows you to define functions, aliases,
and script files with the same names, and select which

259

one you want to execute. We'll examine this process in
more detail in the section on command-line processing in
Chapter 7.

If you need to know the exact source of a command, there
are options to the type built-in command that we saw in
Chapter 3. type by itself will print how bash would
interpret the command, based on the search locations
listed above. If you supply more than one argument to
type, it will print the information for each command in
turn. If you had a shell script, a function, and an alias all
called dodo, type would tell you that dodo, as an alias,
would be used if you typed dodo.

type has several options that allow you to find specific
details of a command. If you want to find out all of the
definitions for dodo you can use type -a. This will
produce output similar to the following:

$ type -all dodo
dodo is aliased to `echo "Everybody has won, and all must have prizes"'
dodo is a function
dodo ()
{

echo "Everybody has won, and all must have prizes"
}
dodo is ./dodo

It is also possible to restrict the search to commands that
are executable files or shell scripts by using the -p option.
If the command as typed to bash executes a file or shell
script, the path name of the file is returned; otherwise,
nothing is printed.

260

The -P option forces type to look for executable files or
shell scripts even if the result of -t would not return file.

A further option, -f, suppresses shell function lookup, i.e.,
only keywords, files and aliases will be returned.[2]

The default output from type is verbose; it will give you
the full definition for an alias or function. By using the -t
option, you can restrict this to a single word descriptor:
alias, keyword, function, builtin, or file. For example:

$ type -t bash
file
$ type -t if
keyword

The -t option can also be used with all other options.

We will refer mainly to scripts throughout the remainder
of this book, but unless we note otherwise, you should
assume that whatever we say applies equally to functions.

[1] The -F option is not available in versions of bash prior
to 2.0.

[2] The options -f and -P are not available in versions of
bash prior to 2.05b.

261

Shell Variables
bash derives much of its programming functionality from
shell variables. We've already seen the basics of
variables. To recap briefly: they are named places to store
data, usually in the form of character strings, and their
values can be obtained by preceding their names with
dollar signs ($). Certain variables, called environment
variables, are conventionally named in all capital letters,
and their values are made known (with the export
statement) to subprocesses.

If you are a programmer, you already know that just
about every major programming language uses variables
in some way; in fact, an important way of characterizing
differences between languages is comparing their
facilities for variables.

The chief difference between bash's variable schema and
those of conventional languages is that bash's places
heavy emphasis on character strings. (Thus it has more in
common with a special-purpose language like SNOBOL
than a general-purpose one like Pascal.) This is also true
of the Bourne shell and the C shell, but bash goes beyond
them by having additional mechanisms for handling
integers explicitly.

262

Positional Parameters

As we have already seen, you can define values for
variables with statements of the form varname=value,
e.g.:

$ hatter=mad
$ echo "$hatter"
mad

The shell predefines some environment variables when
you log in. There are other built-in variables that are vital
to shell programming. We will look at a few of them now
and save the others for later.

The most important special, built-in variables are called
positional parameters. These hold the command-line
arguments to scripts when they are invoked. Positional
parameters have the names 1, 2, 3, etc., meaning that their
values are denoted by $1, $2, $3, etc. There is also a
positional parameter 0, whose value is the name of the
script (i.e., the command typed in to invoke it).

Two special variables contain all of the positional
parameters (except positional parameter 0): * and @. The
difference between them is subtle but important, and it's
apparent only when they are within double quotes.

"$*" is a single string that consists of all of the positional
parameters, separated by the first character in the value of
the environment variable IFS (internal field separator),

263

which is a space, TAB, and NEWLINE by default. On the
other hand, "$@" is equal to "$1" "$2"... "$ N", where N
is the number of positional parameters. That is, it's equal
to N separate double-quoted strings, which are separated
by spaces. If there are no positional parameters, "$@"
expands to nothing. We'll explore the ramifications of this
difference in a little while.

The variable # holds the number of positional parameters
(as a character string). All of these variables are
"read-only," meaning that you can't assign new values to
them within scripts.

For example, assume that you have the following simple
shell script:

echo "alice: $@"
echo "$0: $1 $2 $3 $4"
echo "$# arguments"

Assume further that the script is called alice. Then if you
type alice in wonderland, you will see the following
output:

alice: in wonderland
alice: in wonderland
2 arguments

In this case, $3 and $4 are unset, which means that the
shell will substitute the empty (or null) string for them.[3]

264

Positional parameters in
functions

Shell functions use positional parameters and special
variables like * and # in exactly the same way as shell
scripts do. If you wanted to define alice as a function, you
could put the following in your .bash_profile or
environment file:

function alice
{

echo "alice: $*"
echo "$0: $1 $2 $3 $4"
echo "$# arguments"

}

You will get the same result if you type alice in
wonderland.

Typically, several shell functions are defined within a
single shell script. Therefore each function will need to
handle its own arguments, which in turn means that each
function needs to keep track of positional parameters
separately. Sure enough, each function has its own copies
of these variables (even though functions don't run in
their own subshells, as scripts do); we say that such
variables are local to the function.

However, other variables defined within functions are not
local (they are global), meaning that their values are
known throughout the entire shell script. For example,

265

assume that you have a shell script called ascript that
contains this:

function afunc
{

echo in function: $0 $1 $2
var1="in function"
echo var1: $var1

}

var1="outside function"
echo var1: $var1
echo $0: $1 $2
afunc funcarg1 funcarg2
echo var1: $var1
echo $0: $1 $2

If you invoke this script by typing ascript arg1 arg2, you
will see this output:

var1: outside function
ascript: arg1 arg2
in function: ascript funcarg1 funcarg2
var1: in function
var1: in function
ascript: arg1 arg2

In other words, the function afunc changes the value of
the variable var1 from "outside function" to "in
function," and that change is known outside the function,
while $1 and $2 have different values in the function and
the main script. Notice that $0 doesn't change because the
function executes in the environment of the shell script
and $0 takes the name of the script. Figure 4-2 shows the
scope of each variable graphically.

266

Figure 4-2. Functions have their own
positional parameters

267

Local Variables in Functions

A local statement inside a function definition makes the
variables involved all become local to that function. The
ability to define variables that are local to "subprogram"
units (procedures, functions, subroutines, etc.) is
necessary for writing large programs, because it helps
keep subprograms independent of the main program and
of each other.

Here is the function from our last example with the
variable var1 made local:

function afunc
{

local var1
echo in function: $0 $1 $2

var1="in function"
echo var1: $var1

}

Now the result of running ascript arg1 arg2 is:

var1: outside function
ascript: arg1 arg2
in function: ascript funcarg1 funcarg2
var1: in function
var1: outside function
ascript: arg1 arg2

268

Figure 4-3 shows the scope of each variable in our new
script. Note that afunc now has its own, local copy of
var1, although the original var1 would still be used by
any other functions that ascript invokes.

Figure 4-3. Functions can have local
variables

269

Quoting with $@ and $*

Now that we have this background, let's take a closer look
at "$@" and "$*". These variables are two of the shell's
greatest idiosyncracies, so we'll discuss some of the most
common sources of confusion.

• Why are the elements of "$*" separated by the
first character of IFS instead of just spaces? To
give you output flexibility. As a simple example,
let's say you want to print a list of positional
parameters separated by commas. This script
would do it:

IFS=,
echo "$*"

• Changing IFS in a script is risky, but it's
probably OK as long as nothing else in the script
depends on it. If this script were called arglist,
then the command arglist alice dormouse hatter
would produce the output
alice,dormouse,hatter. Chapter 5 and Chapter
10 contain other examples of changing IFS.

• Why does "$@" act like N separate
double-quoted strings? To allow you to use them
again as separate values. For example, say you

270

want to call a function within your script with the
same list of positional parameters, like this:

function countargs
{

echo "$# args."
}

• Assume your script is called with the same
arguments as arglist above. Then if it contains
the command countargs "$*", the function will
print 1 args. But if the command is countargs
"$@", the function will print 3 args.

271

More on Variable Syntax

Before we show the many things you can do with shell
variables, we have to point out a simplification we have
been making: the syntax of $varname for taking the value
of a variable is actually the simple form of the more
general syntax, ${varname}.

Why two syntaxes? For one thing, the more general
syntax is necessary if your code refers to more than nine
positional parameters: you must use ${10} for the tenth
instead of $10. Aside from that, consider the following
case where you would like to place an underscore after
your user ID:

echo $UID_

The shell will try to use UID_ as the name of the
variable. Unless, by chance, $UID_ already exists, this
won't print anything (the value being null or the empty
string, ""). To obtain the desired result, you need to
enclose the shell variable in curly brackets:

echo ${UID}_

It is safe to omit the curly brackets ({}) if the variable
name is followed by a character that isn't a letter, digit, or
underscore.

272

[3] Unless the option nounset is turned on, in which case
the shell will return an error message.

273

String Operators
The curly-bracket syntax allows for the shell's string
operators. String operators allow you to manipulate
values of variables in various useful ways without having
to write full-blown programs or resort to external UNIX
utilities. You can do a lot with string-handling operators
even if you haven't yet mastered the programming
features we'll see in later chapters.

In particular, string operators let you do the following:

• Ensure that variables exist (i.e., are defined and
have non-null values)

• Set default values for variables

• Catch errors that result from variables not being
set

• Remove portions of variables' values that match
patterns

Syntax of String Operators

The basic idea behind the syntax of string operators is
that special characters that denote operations are inserted
between the variable's name and the right curly bracket.

274

Any argument that the operator may need is inserted to
the operator's right.

The first group of string-handling operators tests for the
existence of variables and allows substitutions of default
values under certain conditions. These are listed in Table
4-1.[4]

Table 4-1. Substitution operators

Operator Substitution

${ varname :- word }

If varname exists and isn't null,
return its value; otherwise return
word.

Purpose: Returning a default
value if the variable is
undefined.

Example: ${count:-0}
evaluates to 0 if count is
undefined.

${ varname := word}
If varname exists and isn't null,
return its value; otherwise set it
to word and then return its

275

Operator Substitution

value. Positional and special
parameters cannot be assigned
this way.

Purpose: Setting a variable to a
default value if it is undefined.

Example: ${count:=0} sets
count to 0 if it is undefined.

${ varname :?
message }

If varname exists and isn't null,
return its value; otherwise print
varname: followed by message,
and abort the current command
or script (non-interactive shells
only). Omitting message
produces the default message
parameter null or not set.

Purpose: Catching errors that
result from variables being
undefined.

Example:
{count:?"undefined!"} prints

276

Operator Substitution

"count: undefined!" and exits if
count is undefined.

${ varname:+word }

If varname exists and isn't null,
return word; otherwise return
null.

Purpose: Testing for the
existence of a variable.

Example: ${count:+1} returns
1 (which could mean "true") if
count is defined.

${
varname:offset:length
}

Performs substring expansion.[5]

It returns the substring of
$varname starting at offset and
up to length characters. The first
character in $varname is
position 0. If length is omitted,
the substring starts at offset and
continues to the end of
$varname. If offset is less than 0
then the position is taken from

277

Operator Substitution

the end of $varname. If
varname is @, the length is the
number of positional parameters
starting at parameter offset.

Purpose: Returning parts of a
string (substrings or slices).

Example: If count is set to
frogfootman, ${count:4} returns
footman. ${count:4:4} returns
foot.

[5] The substring expansion operator is not available in
versions of bash prior to 2.0.

The first of these operators is ideal for setting defaults for
command-line arguments in case the user omits them.
We'll use this technique in our first programming task.

Task 4-1

278

You have a large album collection, and you want to
write some software to keep track of it. Assume that you
have a file of data on how many albums you have by
each artist. Lines in the file look like this:

5 Depeche Mode
2 Split Enz
3 Simple Minds
1 Vivaldi, Antonio

Write a program that prints the N highest lines, i.e., the
N artists by whom you have the most albums. The
default for N should be 10. The program should take one
argument for the name of the input file and an optional
second argument for how many lines to print.

By far the best approach to this type of script is to use
built-in UNIX utilities, combining them with I/O
redirectors and pipes. This is the classic "building-block"
philosophy of UNIX that is another reason for its great
popularity with programmers. The building-block
technique lets us write a first version of the script that is
only one line long:

sort -nr $1 | head -${2:-10}

Here is how this works: the sort program sorts the data in
the file whose name is given as the first argument ($1).
The -n option tells sort to interpret the first word on each
line as a number (instead of as a character string); the -r

279

tells it to reverse the comparisons, so as to sort in
descending order.

The output of sort is piped into the head utility, which,
when given the argument - N, prints the first N lines of its
input on the standard output. The expression -${2:-10}
evaluates to a dash (-) followed by the second argument if
it is given, or to -10 if it's not; notice that the variable in
this expression is 2, which is the second positional
parameter.

Assume the script we want to write is called highest.
Then if the user types highest myfile, the line that
actually runs is:

sort -nr myfile | head -10

Or if the user types highest myfile 22, the line that runs
is:

sort -nr myfile | head -22

Make sure you understand how the :- string operator
provides a default value.

This is a perfectly good, runnable script—but it has a few
problems. First, its one line is a bit cryptic. While this
isn't much of a problem for such a tiny script, it's not wise
to write long, elaborate scripts in this manner. A few
minor changes will make the code more readable.

First, we can add comments to the code; anything
between # and the end of a line is a comment. At a

280

minimum, the script should start with a few comment
lines that indicate what the script does and what
arguments it accepts. Second, we can improve the
variable names by assigning the values of the positional
parameters to regular variables with mnemonic names.
Finally, we can add blank lines to space things out; blank
lines, like comments, are ignored. Here is a more readable
version:

#
highest filename [howmany]
#
Print howmany highest-numbered lines in file filename.
The input file is assumed to have lines that start with
numbers. Default for howmany is 10.
#

filename=$1
howmany=${2:-10}

sort -nr $filename | head -$howmany

The square brackets around howmany in the comments
adhere to the convention in UNIX documentation that
square brackets denote optional arguments.

The changes we just made improve the code's readability
but not how it runs. What if the user were to invoke the
script without any arguments? Remember that positional
parameters default to null if they aren't defined. If there
are no arguments, then $1 and $2 are both null. The
variable howmany ($2) is set up to default to 10, but
there is no default for filename ($1). The result would be
that this command runs:

281

sort -nr | head -10

As it happens, if sort is called without a filename
argument, it expects input to come from standard input,
e.g., a pipe (|) or a user's terminal. Since it doesn't have
the pipe, it will expect the terminal. This means that the
script will appear to hang! Although you could always hit
CTRL-D or CTRL-C to get out of the script, a naive user
might not know this.

Therefore we need to make sure that the user supplies at
least one argument. There are a few ways of doing this;
one of them involves another string operator. We'll
replace the line:

filename=$1

with:

filename=${1:?"filename missing."}

This will cause two things to happen if a user invokes the
script without any arguments: first the shell will print the
somewhat unfortunate message:

highest: 1: filename missing.

to the standard error output. Second, the script will exit
without running the remaining code. With a somewhat
"kludgy" modification, we can get a slightly better error
message.

Consider this code:

282

filename=$1
filename=${filename:?"missing."}

This results in the message:

highest: filename: missing.

(Make sure you understand why.) Of course, there are
ways of printing whatever message is desired; we'll find
out how in Chapter 5.

Before we move on, we'll look more closely at the three
remaining operators in Table 4-1 and see how we can
incorporate them into our task solution. The := operator
does roughly the same thing as :-, except that it has the
"side effect" of setting the value of the variable to the
given word if the variable doesn't exist.

Therefore we would like to use := in our script in place of
:-, but we can't; we'd be trying to set the value of a
positional parameter, which is not allowed. But if we
replaced:

howmany=${2:-10}

with just:

howmany=$2

and moved the substitution down to the actual command
line (as we did at the start), then we could use the :=
operator:

sort -nr $filename | head -${howmany:=10}

283

The operator :+ substitutes a value if the given variable
exists and isn't null. Here is how we can use it in our
example: let's say we want to give the user the option of
adding a header line to the script's output. If she types the
option -h, then the output will be preceded by the line:

ALBUMS ARTIST

Assume further that this option ends up in the variable
header, i.e., $header is -h if the option is set or null if
not. (Later we will see how to do this without disturbing
the other positional parameters.)

The following expression yields null if the variable
header is null, or ALBUMSARTIST\n if it is non-null:

${header:+"ALBUMSARTIST\n"}

This means that we can put the line:

echo -e -n ${header:+"ALBUMSARTIST\n"}

right before the command line that does the actual work.
The -n option to echo causes it not to print a LINEFEED
after printing its arguments. Therefore this echo statement
will print nothing—not even a blank line—if header is
null; otherwise it will print the header line and a
LINEFEED (\n). The -e option makes echo interpret the
\n as a LINEFEED rather than literally.

The final operator, substring expansion, returns sections
of a string. We can use it to "pick out" parts of a string
that are of interest. Assume that our script is able to

284

assign lines of the sorted list, one at a time, to the variable
album_line. If we want to print out just the album name
and ignore the number of albums, we can use substring
expansion:

echo ${album_line:8}

This prints everything from character position 8, which is
the start of each album name, onwards.

If we just want to print the numbers and not the album
names, we can do so by supplying the length of the
substring:

echo ${album_line:0:7}

Although this example may seem rather useless, it should
give you a feel for how to use substrings. When
combined with some of the programming features
discussed later in the book, substrings can be extremely
useful.

285

Patterns and Pattern
Matching

We'll continue refining our solution to Task 4-1 later in
this chapter. The next type of string operator is used to
match portions of a variable's string value against
patterns. Patterns, as we saw in Chapter 1, are strings that
can contain wildcard characters (*, ?, and [] for character
sets and ranges).

Table 4-2 lists bash's pattern-matching operators.

Table 4-2. Pattern-matching operators

Operator Meaning

${variable
#pattern}

If the pattern matches the
beginning of the variable's value,
delete the shortest part that
matches and return the rest.

${variable
##pattern}

If the pattern matches the
beginning of the variable's value,

286

Operator Meaning

delete the longest part that matches
and return the rest.

${variable
%pattern}

If the pattern matches the end of
the variable's value, delete the
shortest part that matches and
return the rest.

${variable
%%pattern}

If the pattern matches the end of
the variable's value, delete the
longest part that matches and
return the rest.

${variable/
pattern/
string}${variable//
pattern/ string}

The longest match to pattern in
variable is replaced by string. In
the first form, only the first match
is replaced. In the second form, all
matches are replaced. If the pattern
begins with a #, it must match at
the start of the variable. If it begins
with a %, it must match with the
end of the variable. If string is
null, the matches are deleted. If

287

Operator Meaning

variable is @ or *, the operation is
applied to each positional
parameter in turn and the
expansion is the resultant list.[6]

[6] The pattern-matching and replacement operator is
not available in versions of bash prior to 2.0.

These can be hard to remember; here's a handy mnemonic
device: # matches the front because number signs precede
numbers; % matches the rear because percent signs
follow numbers.

The classic use for pattern-matching operators is in
stripping off components of pathnames, such as directory
prefixes and filename suffixes. With that in mind, here is
an example that shows how all of the operators work.
Assume that the variable path has the value /home/cam/
book/long.file.name; then:

Expression Result
${path##/*/} long.file.name
${path#/*/} cam/book/long.file.name
$path /home/cam/book/long.file.name
${path%.*} /home/cam/book/long.file
${path%%.*} /home/cam/book/long

288

The two patterns used here are /*/, which matches
anything between two slashes, and .*, which matches a
dot followed by anything.

The longest and shortest pattern-matching operators
produce the same output unless they are used with the *
wildcard operator. As an example, if filename had the
value alicece, then both ${filename%ce} and
${filename%%ce} would produce the result alice. This
is because ce is an exact match; for a match to occur, the
string ce must appear on the end $filename. Both the
short and long matches will then match the last grouping
of ce and delete it. If, however, we had used the *
wildcard, then ${filename%ce*} would produce alice
because it matches the shortest occurrence of ce followed
by anything else. ${filename%%ce*} would return ali
because it matches the longest occurrence of ce followed
by anything else; in this case the first and second ce.

The next task will incorporate one of these
pattern-matching operators.

Task 4-2

You are writing a graphics file conversion utility for use
in creating a web page. You want to be able to take a
PCX file and convert it to a JPEG file for use on the
web page.[7]

289

Graphics file conversion utilities are quite common
because of the plethora of different graphics formats and
file types. They allow you to specify an input file, usually
from a range of different formats, and convert it to an
output file of a different format. In this case, we want to
take a PCX file, which can't be displayed with a web
browser, and convert it to a JPEG which can be displayed
by nearly all browsers. Part of this process is taking the
filename of the PCX file, which ends in .pcx, and
changing it to one ending in .jpg for the output file. In
essence, you want to take the original filename and strip
off the .pcx, then append .jpg. A single shell statement
will do this:

outfile=${filename%.pcx}.jpg

The shell takes the filename and looks for .pcx on the end
of the string. If it is found, .pcx is stripped off and the rest
of the string is returned. For example, if filename had the
value alice.pcx, the expression ${filename%.pcx} would
return alice. The .jpg is appended to form the desired
alice.jpg, which is then stored in the variable outfile.

If filename had an inappropriate value (without the .pcx)
such as alice.xpm, the above expression would evaluate
to alice.xpm.jpg: since there was no match, nothing is
deleted from the value of filename, and .jpg is appended
anyway. Note, however, that if filename contained more
than one dot (e.g., if it were alice.1.pcx—the expression
would still produce the desired value alice.1.jpg).

The next task uses the longest pattern-matching operator.

290

Task 4-3

You are implementing a filter that prepares a text file
for printer output. You want to put the file's
name—without any directory prefix—on the "banner"
page. Assume that, in your script, you have the
pathname of the file to be printed stored in the variable
pathname.

Clearly, the objective is to remove the directory prefix
from the pathname. The following line will do it:

bannername=${pathname##*/}

This solution is similar to the first line in the examples
shown before. If pathname were just a filename, the
pattern */ (anything followed by a slash) would not match
and the value of the expression would be pathname
untouched. If pathname were something like book/
wonderland, the prefix book/ would match the pattern and
be deleted, leaving just wonderland as the expression's
value. The same thing would happen if pathname were
something like /home/cam/ book/wonderland: since the
deletes the longest match, it deletes the entire /home/
cam/book/.

If we used #*/ instead of ##*/, the expression would have
the incorrect value home/cam/book/wonderland, because

291

the shortest instance of "anything followed by a slash" at
the beginning of the string is just a slash (/).

The construct ${ variable ##*/} is actually equivalent to
the UNIX utility basename. basename takes a pathname
as argument and returns the filename only; it is meant to
be used with the shell's command substitution mechanism
(see the following explanation). basename is less efficient
than ${ variable ##*/} because it runs in its own separate
process rather than within the shell. Another utility,
dirname, does essentially the opposite of basename: it
returns the directory prefix only. It is equivalent to the
bash expression ${ variable %/*} and is less efficient for
the same reason.

The last operator in the table matches patterns and
performs substitutions. Task 4-4 is a simple task where it
comes in useful.

Task 4-4

The directories in PATH can be hard to distinguish
when printed out as one line with colon delimiters. You
want a simple way to display them, one to a line.

As directory names are separated by colons, the easiest
way would be to replace each colon with a LINEFEED:

292

$ echo -e ${PATH//:/'\n'}
/home/cam/bin
/usr/local/bin
/bin
/usr/bin
/usr/X11R6/bin

Each occurrence of the colon is replaced by \n. As we
saw earlier, the -e option allows echo to interpret \n as a
LINEFEED. In this case we used the second of the two
substitution forms. If we'd used the first form, only the
first colon would have been replaced with a \n.

293

Length Operator

There is one remaining operator on variables. It is ${#
varname }, which returns the length of the value of the
variable as a character string. (In Chapter 6, we will see
how to treat this and similar values as actual numbers so
they can be used in arithmetic expressions.) For example,
if filename has the value alice.c, then ${#filename}
would have the value 7.

294

Extended Pattern Matching

Bash provides a further set of pattern matching operators
if the shopt option extglob is switched on. Each operator
takes one or more patterns, normally strings, separated by
the vertical bar (|). The extended pattern matching
operators are given in Table 4-3.[8]

Table 4-3. Pattern-matching operators

Operator Meaning

*(patternlist) Matches zero or more occurrences of
the given patterns.

+(patternlist) Matches one or more occurrences of the
given patterns.

?(patternlist) Matches zero or one occurrences of the
given patterns.

295

Operator Meaning

@(patternlist) Matches exactly one of the given
patterns.

!(patternlist) Matches anything except one of the
given patterns.

Some examples of these include:

• *(alice|hatter|hare) would match zero or more
occurrences of alice, hatter, and hare. So it
would match the null string, alice, alicehatter,
etc.

• +(alice|hatter|hare) would do the same except
not match the null string.

• ?(alice|hatter|hare) would only match the null
string, alice, hatter, or hare.

• @(alice|hatter|hare) would only match alice,
hatter, or hare.

• !(alice|hatter|hare) matches everything except
alice, hatter, and hare.

296

The values provided can contain shell wildcards too. So,
for example, +([0-9]) matches a number of one or more
digits. The patterns can also be nested, so you could
remove all files except those beginning with vt followed
by a number by doing rm !(vt+([0-9])).

[4] The colon (:) in all but the last of these operators is
actually optional. If the colon is omitted, then change
"exists and isn't null" to "exists" in each definition, i.e.,
the operator tests for existence only.

[7] PCX is a popular graphics file format under Microsoft
Windows. JPEG (Joint Photographic Expert Group) is a
common graphics format on the Internet and is used to a
great extent on web pages.

[8] Be aware that these are not available in early releases
of bash 2.0.

297

Command Substitution
From the discussion so far, we've seen two ways of
getting values into variables: by assignment statements
and by the user supplying them as command-line
arguments (positional parameters). There is another way:
command substitution, which allows you to use the
standard output of a command as if it were the value of a
variable. You will soon see how powerful this feature is.

The syntax of command substitution is:[9]

$(UNIX command)

The command inside the parentheses is run, and anything
the command writes to standard output is returned as the
value of the expression. These constructs can be nested,
i.e., the UNIX command can contain command
substitutions.

Here are some simple examples:

• The value of $(pwd) is the current directory
(same as the environment variable $PWD).

• The value of $(ls $HOME) is the names of all
files in your home directory.

• The value of $(ls $(pwd)) is the names of all files
in the current directory.

298

• The value of $(< alice) is the contents of the file
alice with any trailing newlines removed.[10]

• To find out detailed information about a
command if you don't know where its file
resides, type ls -l $(type -path -all
command-name). The -all option forces type to
do a pathname look-up and -path causes it to
ignore keywords, built-ins, etc.

• If you want to edit (with vi) every chapter of your
book on bash that has the phrase "command
substitution," assuming that your chapter files all
begin with ch, you could type:

vi $(grep -l 'command substitution' ch*)
• The -l option to grep prints only the names of

files that contain matches.

Command substitution, like variable and tilde expansion,
is done within double quotes. Therefore, our rule in
Chapter 1 and Chapter 3 about using single quotes for
strings unless they contain variables will now be
extended: "When in doubt, use single quotes, unless the
string contains variables or command substitutions, in
which case use double quotes."

Command substitution helps us with the solution to the
next programming task, which relates to the album
database in Task 4-1.

299

Task 4-5

The file used in Task 4-1 is actually a report derived
from a bigger table of data about albums. This table
consists of several columns, or fields, to which a user
refers by names like "artist," "title," "year," etc. The
columns are separated by vertical bars (|, the same as the
UNIX pipe character). To deal with individual columns
in the table, field names need to be converted to field
numbers.

Suppose there is a shell function called getfield that
takes the field name as argument and writes the
corresponding field (or column) number on the standard
output. Use this routine to help extract a column from
the data table.

The cut utility is a natural for this task. cut is a data filter:
it extracts columns from tabular data. If you supply the
numbers of columns you want to extract from the input,
cut will print only those columns on the standard output.
Columns can be character positions or—relevant in this
example—fields that are separated by TAB characters or
other delimiters.[11] Assume that the data table in our task
is a file called albums and that it looks like this:

Depeche Mode|Speak and Spell|Mute Records|1981
Depeche Mode|Some Great Reward|Mute Records|1984
Depeche Mode|101|Mute Records|1989
Depeche Mode|Violator|Mute Records|1990

300

Depeche Mode|Songs of Faith and Devotion|Mute Records|1993
...

Here is how we would use cut to extract the fourth (year)
column:

cut -f4 -d\| albums

The -d argument is used to specify the character used as
field delimiter (TAB is the default). The vertical bar must
be backslash-escaped so that the shell doesn't try to
interpret it as a pipe.

From this line of code and the getfield routine, we can
easily derive the solution to the task. Assume that the first
argument to getfield is the name of the field the user
wants to extract. Then the solution is:

fieldname=$1
cut -f$(getfield $fieldname) -d\| albums

If we called this script with the argument year, the output
would be:

1981
1984
1989
1990
1993
...

Task 4-6 shows another small task that makes use of cut.

301

Task 4-6

Send a mail message to everyone who is currently
logged in.

The command who tells you who is logged in (as well as
which terminal they're on and when they logged in). Its
output looks like this:

root tty1 Oct 13 12:05
michael tty5 Oct 13 12:58
cam tty23 Oct 13 11:51
kilrath tty25 Oct 13 11:58

The fields are separated by spaces, not TABs. Since we
need the first field, we can get away with using a space as
the field separator in the cut command. (Otherwise we'd
have to use the option to cut that uses character columns
instead of fields.) To provide a space character as an
argument on a command line, you can surround it by
quotes:

$ who | cut -d' ' -f1
With the above who output, this command's output would
look like this:

root
michael
cam
kilrath

This leads directly to a solution to the task. Just type:

302

$ mail $(who | cut -d' ' -f1)
The command mail root michael cam kilrath will run
and then you can type your message.

Task 4-7 is another task that shows how useful command
pipelines can be in command substitution.

Task 4-7

The ls command gives you pattern-matching capability
with wildcards, but it doesn't allow you to select files by
modification date. Devise a mechanism that lets you do
this.

Here is a function that allows you to list all files that were
last modified on the date you give as argument. Once
again, we choose a function for speed reasons. No pun is
intended by the function's name:

function lsd
{

date=$1
ls -l | grep -i "^.\{42\}$date" | cut -c55-

}

This function depends on the column layout of the ls -l
command. In particular, it depends on dates starting in
column 42 and filenames starting in column 55. If this
isn't the case in your version of UNIX, you will need to
adjust the column numbers.[12]

303

We use the grep search utility to match the date given as
argument (in the form Mon DD, e.g., Jan 15 or Oct 6, the
latter having two spaces) to the output of ls -l. This gives
us a long listing of only those files whose dates match the
argument. The -i option to grep allows you to use all
lowercase letters in the month name, while the rather
fancy argument means, "Match any line that contains 41
characters followed by the function argument." For
example, typing lsd `jan 15' causes grep to search for
lines that match any 41 characters followed by jan 15 (or
Jan 15).[13]

The output of grep is piped through our ubiquitous friend
cut to retrieve the filenames only. The argument to cut
tells it to extract characters in column 55 through the end
of the line.

With command substitution, you can use this function
with any command that accepts filename arguments. For
example, if you want to print all files in your current
directory that were last modified today, and today is
January 15th, you could type:

$ lp $(lsd 'jan 15')
The output of lsd is on multiple lines (one for each
filename), but LINEFEEDs are legal field separators for
the lp command, because the environment variable IFS
(see earlier in this chapter) contains LINEFEED by
default.

304

[9] Bourne and C shell users should note that the
command substitution syntax of those shells, `UNIX
command ` (with backward quotes, or grave accents), is
also supported by bash for backward compatibility
reasons. However, it is harder to read and less conducive
to nesting.

[10] Not available in versions of bash prior to 2.02.

[11] Some older BSD-derived systems don't have cut, but
you can use awk instead. Whenever you see a command
of the form: cut -f N -d C filename, use this
instead: awk -F C '{print $ N }' filename.

[12] For example, ls -l on SunOS 4.1.x has dates starting
in column 33 and filenames starting in column 46.

[13] Some older BSD-derived versions of UNIX (without
System V extensions) do not support the \{ N \} option.
For this example, use 42 periods in a row instead of
.\{42\}.

305

Advanced Examples:
pushd and popd
We will conclude this chapter with a couple of functions
that are already built into bash but are useful in
demonstrating some of the concepts we have covered in
this chapter.[14]

Task 4-8

The functions pushd and popd implement a stack of
directories that enable you to move to another directory
temporarily and have the shell remember where you
were. Implement them as shell functions.

We will start by implementing a significant subset of
their capabilities and finish the implementation in
Chapter 6.

Think of a stack as a spring-loaded dish receptacle in a
cafeteria. When you place dishes on the receptacle, the
spring compresses so that the top stays at roughly the
same level. The dish most recently placed on the stack is
the first to be taken when someone wants food; thus, the
stack is known as a "last-in, first-out" or LIFO structure.
Putting something onto a stack is known in computer

306

science parlance as pushing, and taking something off the
top is called popping.

A stack is very handy for remembering directories, as we
will see; it can "hold your place" up to an arbitrary
number of times. The cd - form of the cd command does
this, but only to one level. For example: if you are in
firstdir and then you change to seconddir, you can type
cd - to go back. But if you start out in firstdir, then
change to seconddir, and then go to thirddir, you can use
cd - only to go back to seconddir. If you type cd - again,
you will be back in thirddir, because it is the previous
directory.[15]

If you want the "nested" remember-and-change
functionality that will take you back to firstdir, you need
a stack of directories along with the pushd and popd
commands. Here is how these work:

• The first time pushd dir is called, pushd pushes
the current directory onto the stack, then cds to
dir and pushes it onto the stack.

• Subsequent calls to pushd dir cd to dir and push
dir only onto the stack.

• popd removes the top directory off the stack,
revealing a new top. Then it cds to the new top
directory.

307

For example, consider the series of events in Table 4-4.
Assume that you have just logged in, and that you are in
your home directory (/home/you).

Table 4-4. pushd/popd example

Command Stack contents Result
directory

pushd
lizard

/home/you/lizard /home/
you

/home/you/
lizard

pushd /etc /etc /home/you/lizard
/home/you /etc

popd /home/you/lizard /home/
you

/home/you/
lizard

popd /home/you /home/you

popd <empty> (error)

We will implement a stack as an environment variable
containing a list of directories separated by spaces.[16]

308

Your directory stack should be initialized to the null
string when you log in. To do this, put this in your
.bash_profile:

DIR_STACK=""
export DIR_STACK

Do not put this in your environment file if you have one.
The export statement guarantees that DIR_STACK is
known to all subprocesses; you want to initialize it only
once. If you put this code in an environment file, it will
get reinitialized in every subshell, which you probably
don't want.

Next, we need to implement pushd and popd as functions.
Here are our initial versions:

pushd ()
{

dirname=$1
DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"
cd ${dirname:?"missing directory name."}
echo "$DIR_STACK"

}

popd ()
{

DIR_STACK=${DIR_STACK#* }
cd ${DIR_STACK%% *}
echo "$PWD"

}

Notice that there isn't much code! Let's go through the
two functions and see how they work, starting with

309

pushd. The first line merely saves the first argument in
the variable dirname for readability reasons.

The second line of the function pushes the new directory
onto the stack. The expression ${DIR_STACK:-$PWD`
'} evaluates to $DIR_STACK if it is non-null or $PWD''
(the current directory and a space) if it is null. The
expression within double quotes, then, consists of the
argument given, followed by a single space, followed by
DIR_STACK or the current directory and a space. The
trailing space on the current directory is required for
pattern matching in the popd function; each directory in
the stack is considered to be of the form "dirname".

The double quotes in the assignment ensure that all of this
is packaged into a single string for assignment back to
DIR_STACK. Thus, this line of code handles the special
initial case (when the stack is empty) as well as the more
usual case (when it's not empty).

The third line's main purpose is to change to the new
directory. We use the :? operator to handle the error when
the argument is missing: if the argument is given, then the
expression ${dirname:?"missing directory name."}
evaluates to $dirname, but if it is not given, the shell will
print the message pushd: dirname: missing directory
name and exit from the function.

The last line merely prints the contents of the stack, with
the implication that the leftmost directory is both the
current directory and at the top of the stack. (This is why

310

we chose spaces to separate directories, rather than the
more customary colons as in PATH and MAILPATH.)

The popd function makes yet another use of the shell's
pattern-matching operators. Its first line uses the #
operator, which tries to delete the shortest match of the
pattern "* " (anything followed by a space) from the
value of DIR_STACK. The result is that the top directory
and the space following it are deleted from the stack. This
is why we need the space on the end of the first directory
pushed onto the stack.

The second line of popd uses the pattern-matching
operator %% to delete the longest match to the pattern
"*" (a space followed by anything) from DIR_STACK.
This extracts the top directory as an argument to cd, but it
doesn't affect the value of DIR_STACK because there is
no assignment. The final line just prints a confirmation
message.

This code is deficient in four ways. First, it has no
provision for errors. For example:

• What if the user tries to push a directory that
doesn't exist or is invalid?

• What if the user tries popd and the stack is
empty?

Test your understanding of the code by figuring out how
it would respond to these error conditions. The second
problem is that if you use pushd in a shell script, it will

311

exit everything if no argument is given; ${ varname :?
message } always exits from non-interactive shells. It
won't, however, exit an interactive shell from which the
function is called. The third deficiency is that it
implements only some of the functionality of bash's
pushd and popd commands—albeit the most useful parts.
In the next chapter, we will see how to overcome all of
these deficiencies.

The fourth problem with the code is that it will not work
if, for some reason, a directory name contains a space.
The code will treat the space as a separator character.
We'll accept this deficiency for now, but you might like
to think about how to overcome it in the next few
chapters.

[14] Your copy of bash may not have pushd and popd,
since it can be configured without these built-ins.

[15] Think of cd - as a synonym for cd $OLDPWD; see
the previous chapter.

[16] bash also maintains a directory stack for the pushd
and popd built-ins, accessible through the environment
variable DIRSTACK. Unlike our version, however, it is
implemented as an array (see Chapter 6 for details on
arrays).

312

Chapter 5. Flow Control
If you are a programmer, you may have read the last
chapter—with its claim at the outset that bash has an
advanced set of programming capabilities—and
wondered where many of the features from conventional
languages were. Perhaps the most glaringly obvious
"hole" in our coverage thus far concerns flow control
constructs like if, for, while, and so on.

Flow control gives a programmer the power to specify
that only certain portions of a program run, or that certain
portions run repeatedly, according to conditions such as
the values of variables, whether or not commands execute
properly, and others. We call this the ability to control the
flow of a program's execution.

Almost every shell script or function that's been shown
thus far has had no flow control—they have just been lists
of commands to be run! Yet bash, like the C and Bourne
shells, has all of the flow control abilities you would
expect and more; we will examine them in this chapter.
We'll use them to enhance the solutions to some of the
programming tasks we saw in the last chapter and to
solve tasks that we will introduce here.

Although we have attempted to explain flow control so
that nonprogrammers can understand it, we also
sympathize with programmers who dread having to slog

313

through yet another tabula rasa explanation. For this
reason, some of our discussions relate bash's flow-control
mechanisms to those that programmers should know
already. Therefore you will be in a better position to
understand this chapter if you already have a basic
knowledge of flow control concepts.

bash supports the following flow control constructs:

if/else

Execute a list of statements if a certain condition is/is
not true

for

Execute a list of statements a fixed number of times

while

Execute a list of statements repeatedly while a
certain condition holds true

until

Execute a list of statements repeatedly until a certain
condition holds true

case

Execute one of several lists of statements depending
on the value of a variable

314

In addition, bash provides a new type of flow-control
construct:

select

Allow the user to select one of a list of possibilities
from a menu

We will now cover each of these in detail.

if/else
The simplest type of flow control construct is the
conditional, embodied in bash's if statement. You use a
conditional when you want to choose whether or not to do
something, or to choose among a small number of things
to do, according to the truth or falsehood of conditions.
Conditions test values of shell variables, characteristics of
files, whether or not commands run successfully, and
other factors. The shell has a large set of built-in tests that
are relevant to the task of shell programming.

The if construct has the following syntax:

if condition
then

statements
[elif condition

then statements...]
[else
statements]

fi

315

The simplest form (without the elif and else parts, or
clauses) executes the statements only if the condition is
true. If you add an else clause, you get the ability to
execute one set of statements if a condition is true or
another set of statements if the condition is false. You can
use as many elif (a contraction of "else if") clauses as you
wish; they introduce more conditions, and thus more
choices for which set of statements to execute. If you use
one or more elifs, you can think of the else clause as the
"if all else fails" part.

Exit Status

Perhaps the only aspect of this syntax that differs from
that of conventional languages like C and Pascal is that
the "condition" is really a list of statements rather than the
more usual Boolean (true or false) expression. How is the
truth or falsehood of the condition determined? It has to
do with a general UNIX concept that we haven't covered
yet: the exit status of commands.

Every UNIX command, whether it comes from source
code in C, some other language, or a shell script/function,
returns an integer code to its calling process—the shell in
this case—when it finishes. This is called the exit status.
0 is usually the OK exit status, while anything else (1 to
255) usually denotes an error. [1]

if checks the exit status of the last statement in the list
following the if keyword. The list is usually just a single

316

statement. If the status is 0, the condition evaluates to
true; if it is anything else, the condition is considered
false. The same is true for each condition attached to an
elif statement (if any).

This enables us to write code of the form:

if command ran successfully
then

normal processing
else

error processing
fi

More specifically, we can now improve on the pushd
function that we saw in the last chapter:

pushd ()
{

dirname=$1
DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"
cd ${dirname:?"missing directory name."}
echo $DIR_STACK

}

This function requires a valid directory as its argument.
Let's look at how it handles error conditions: if no
argument is given, the third line of code prints an error
message and exits. This is fine.

However, the function reacts deceptively when an
argument is given that isn't a valid directory. In case you
didn't figure it out when reading the last chapter, here is
what happens: the cd fails, leaving you in the same

317

directory you were in. This is also appropriate. But the
second line of code has pushed the bad directory onto the
stack anyway, and the last line prints a message that leads
you to believe that the push was successful. Even placing
the cd before the stack assignment won't help because it
doesn't exit the function if there is an error.

We need to prevent the bad directory from being pushed
and to print an error message. Here is how we can do this:

pushd ()
{

dirname=$1
if cd ${dirname:?"missing directory name."} # if cd was successful
then

DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}" # push the directory
echo $DIR_STACK

else
echo still in $PWD. # else do nothing

fi
}

The call to cd is now inside an if construct. If cd is
successful, it will return 0; the next two lines of code are
run, finishing the pushd operation. But if the cd fails, it
returns with exit status 1, and pushd will print a message
saying that you haven't gone anywhere.

Notice that in providing the check for a bad directory, we
have slightly altered the way pushd functions. The stack
will now always start out with two copies of the first
directory pushed onto it. That is because $PWD is
expanded after the new directory has been changed to.
We'll fix this in the next section.

318

You can usually rely on built-in commands and standard
UNIX utilities to return appropriate exit statuses, but
what about your own shell scripts and functions? For
example, what if you wrote a cd function that overrides
the built-in command?

Let's say you have the following code in your
.bash_profile.

cd ()
{

builtin cd "$@"
echo "$OLDPWD --> $PWD"

}

The function cd simply changes directories and prints a
message saying where you were and where you are now.
Because functions have higher priority than most built-in
commands in the shell's order of command look-up, we
need to make sure that the built-in cd is called, otherwise
the shell will enter an endless loop of calling the function,
known as infinite recursion.

The builtin command allows us to do this. builtin tells
the shell to use the built-in command and ignore any
function of that name. Using builtin is easy; you just give
it the name of the built-in you want to execute and any
parameters you want to pass. If you pass in the name of
something which isn't a built-in command, builtin will
display an appropriate message. For example: builtin:
alice: not a shell builtin.

319

We want this function to return the same exit status that
the built-in cd returns. The problem is that the exit status
is reset by every command, so it "disappears" if you don't
save it immediately. In this function, the built-in cd's exit
status disappears when the echo statement runs (and sets
its own exit status).

Therefore, we need to save the status that cd sets and use
it as the entire function's exit status. Two shell features
we haven't seen yet provide the way. First is the special
shell variable ?, whose value ($?) is the exit status of the
last command that ran. For example:

cd baddir
echo $?

causes the shell to print 1, while the following command
causes it to print 0:

cd gooddir
echo $?

So, to save the exit status we need to assign the value of ?
to a variable with the line es=$? right after the cd is done.

320

Return

The second feature we need is the statement return N,
which causes the surrounding function to exit with exit
status N. N is actually optional; it defaults to the exit
status of the last command. Functions that finish without
a return statement (i.e., every one we have seen so far)
return whatever the last statement returns. return can
only be used inside functions, and shell scripts that have
been executed with source. In contrast, the statement exit
N exits the entire script, no matter how deeply you are
nested in functions.

Getting back to our example: if the call to the built-in cd
were last in our cd function, it would behave properly.
Unfortunately, we really need the assignment statement
where it is. Therefore we need to save cd's exit status and
return it as the function's exit status. Here is how to do it:

cd ()
{

builtin cd "$@"
es=$?
echo "$OLDPWD --> $PWD"
return $es

}

The second line saves the exit status of cd in the variable
es; the fourth returns it as the function's exit status. We'll
see a substantial cd "wrapper" in Chapter 7.

321

Exit statuses aren't very useful for anything other than
their intended purpose. In particular, you may be tempted
to use them as "return values" of functions, as you would
with functions in C or Pascal. That won't work; you
should use variables or command substitution instead to
simulate this effect.

322

Combinations of Exit
Statuses

One of the more obscure parts of bash syntax allows you
to combine exit statuses logically, so that you can test
more than one thing at a time.

The syntax statement1 && statement2 means, "execute
statement1, and if its exit status is 0, execute statement2."
The syntax statement1 || statement2 is the converse: it
means, "execute statement1, and if its exit status is not 0,
execute statement2." At first, these look like "if/then" and
"if not/then" constructs, respectively. But they are really
intended for use within conditions of if constructs—as C
programmers will readily understand.

It's much more useful to think of these constructs as "and"
and "or," respectively. Consider this:

if statement1 && statement2
then

...
fi

In this case, statement1 is executed. If it returns a 0 status,
then presumably it ran without error. Then statement2
runs. The then clause is executed if statement2 returns a
0 status. Conversely, if statement1 fails (returns a

323

non-zero exit status), then statement2 doesn't even run;
the last statement that actually ran was statement1, which
failed—so the then clause doesn't run, either. Taken all
together, it's fair to conclude that the then clause runs if
statement1 and statement2 both succeeded.

Similarly, consider this:

if statement1 || statement2
then

...
fi

If statement1 succeeds, then statement2 does not run.
This makes statement1 the last statement, which means
that the then clause runs. On the other hand, if statement1
fails, then statement2 runs, and whether the then clause
runs or not depends on the success of statement2. The
upshot is that the then clause runs if statement1 or
statement2 succeeds.

bash also allows you to reverse the return status of a
statement with the use of !, the logical "not". Preceding a
statement with ! will cause it to return 0 if it fails and 1 if
it succeeds. We'll see an example of this at the end of this
chapter.

As a simple example of testing exit statuses, assume that
we need to write a script that checks a file for the
presence of two words and just prints a message saying
whether either word is in the file or not. We can use grep

324

for this: it returns exit status 0 if it found the given string
in its input, non-zero if not:

filename=$1
word1=$2
word2=$3

if grep $word1 $filename || grep $word2 $filename
then

echo "$word1 or $word2 is in $filename."
fi

The then clause of this code runs if either grep statement
succeeds. Now assume that we want the script to say
whether the input file contains both words. Here's how to
do it:

filename=$1
word1=$2
word2=$3

if grep $word1 $filename && grep $word2 $filename
then

echo "$word1 and $word2 are both in $filename."
fi

We'll see more examples of these logical operators later
in this chapter.

325

Condition Tests

Exit statuses are the only things an if construct can test.
But that doesn't mean you can check only whether
commands ran properly. The shell provides two ways of
testing a variety of conditions. The first is with the [...]
construct, which is available in many different versions of
the Bourne shell.[2] The second is by using the newer
[[...]] construct.[3] The second version is identical to the
first except that word splitting and pathname expansion
are not performed on the words within the brackets. For
the examples in this chapter we will use the first form of
the construct.

You can use the construct to check many different
attributes of a file (whether it exists, what type of file it is,
what its permissions and ownership are, etc.), compare
two files to see which is newer, and do comparisons on
strings.

[condition] is actually a statement just like any other,
except that the only thing it does is return an exit status
that tells whether condition is true. (The spaces after the
opening bracket "[" and before the closing bracket "]" are
required.) Thus it fits within the if construct's syntax.

326

String comparisons

The square brackets ([]) surround expressions that include
various types of operators. We will start with the string
comparison operators, listed in Table 5-1. (Notice that
there are no operators for "greater than or equal" or "less
than or equal" comparisons.) In the table, str1 and str2
refer to expressions with a string value.

Table 5-1. String comparison operators

Operator True if...

str1 = str2[4] str1 matches str2

str1 != str2 str1 does not match str2

str1 < str2 str1 is less than str2

str1 > str2 str1 is greater than str2

-n str1 str1 is not null (has length greater than 0)

327

Operator True if...

-z str1 str1 is null (has length 0)

[4] Note that there is only one equal sign (=). This is a
common source of error.

We can use one of these operators to improve our popd
function, which reacts badly if you try to pop and the
stack is empty. Recall that the code for popd is:

popd ()
{

DIR_STACK=${DIR_STACK#* }
cd ${DIR_STACK%% *}
echo "$PWD"

}

If the stack is empty, then $DIR_STACK is the null
string, as is the expression ${DIR_STACK%% }. This
means that you will change to your home directory;
instead, we want popd to print an error message and do
nothing.

To accomplish this, we need to test for an empty stack,
i.e., whether $DIR_STACK is null or not. Here is one
way to do it:

328

popd ()
{

if [-n "$DIR_STACK"]; then
DIR_STACK=${DIR_STACK#* }
cd ${DIR_STACK%% *}
echo "$PWD"

else
echo "stack empty, still in $PWD."

fi
}

In the condition, we have placed the $DIR_STACK in
double quotes, so that when it is expanded it is treated as
a single word. If you don't do this, the shell will expand
$DIR_STACK to individual words and the test will
complain that it was given too many arguments.

There is another reason for placing $DIR_STACK in
double quotes, which will become important later on:
sometimes the variable being tested will expand to
nothing, and in this example the test will become [-n],
which returns true. Surrounding the variable in double
quotes ensures that even if it expands to nothing, there
will be an empty string as an argument (i.e., [-n ""]).

Also notice that instead of putting then on a separate line,
we put it on the same line as the if after a semicolon,
which is the shell's standard statement separator
character.

We could have used operators other than -n. For example,
we could have used -z and switched the code in the then
and else clauses.

329

While we're cleaning up code we wrote in the last
chapter, let's fix up the error handling in the highest script
(Task 5-1). The code for that script was:

filename=${1:?"filename missing."}
howmany=${2:-10}
sort -nr $filename | head -$howmany

Recall that if you omit the first argument (the filename),
the shell prints the message highest: 1: filename
missing. We can make this better by substituting a more
standard "usage" message. While we are at it, we can also
make the command more in line with conventional UNIX
commands by requiring a dash before the optional
argument.

if [-z "$1"]; then
echo 'usage: highest filename [-N]'

else
filename=$1
howmany=${2:--10}
sort -nr $filename | head $howmany

fi

Notice that we have moved the dash in front of
$howmany inside the parameter expansion ${2:—10}.

It is considered better programming style to enclose all of
the code in the if-then-else, but such code can get
confusing if you are writing a long script in which you
need to check for errors and bail out at several points
along the way. Therefore, a more usual style for shell
programming follows.

330

if [-z "$1"]; then
echo 'usage: highest filename [-N]'
exit 1

fi

filename=$1
howmany=${2:--10}
sort -nr $filename | head $howmany

The exit statement informs any calling program whether
it ran successfully or not.

As an example of the = operator, we can add to the
graphics utility that we touched on in Task 4-2. Recall
that we were given a filename ending in .pcx (the original
graphics file), and we needed to construct a filename that
was the same but ended in .jpg (the output file). It would
be nice to be able to convert several other types of
formats to JPEG files so that we could use them on a web
page. Some common types we might want to convert
besides PCX include XPM (X PixMap), TGA (Targa),
TIFF (Tagged Image File Format), and GIF.

We won't attempt to perform the actual manipulations
needed to convert one graphics format to another
ourselves. Instead we'll use some tools that are freely
available on the Internet, graphics conversion utilities
from the NetPBM archive. [5]

Don't worry about the details of how these utilities work;
all we want to do is create a shell frontend that processes
the filenames and calls the correct conversion utilities. At
this point it is sufficient to know that each conversion

331

utility takes a filename as an argument and sends the
results of the conversion to standard output. To reduce the
number of conversion programs necessary to convert
between the 30 or so different graphics formats it
supports, NetPBM has its own set of internal formats.
These are called Portable Anymap files (also called
PNMs) with extensions .ppm (Portable Pix Map) for color
images, .pgm (Portable Gray Map) for grayscale images,
and .pbm (Portable Bit Map) for black and white images.
Each graphics format has a utility to convert to and from
this "central" PNM format.

The frontend script we are developing should first choose
the correct conversion utility based on the filename
extension, and then convert the resulting PNM file into a
JPEG:

filename=$1
extension=${filename##*.}
pnmfile=${filename%.*}.pnm
outfile=${filename%.*}.jpg
if [-z $filename]; then

echo "procfile: No file specified"
exit 1

fi
if [$extension = jpg]; then

exit 0
elif [$extension = tga]; then

tgatoppm $filename > $pnmfile
elif [$extension = xpm]; then

xpmtoppm $filename > $pnmfile
elif [$extension = pcx]; then

pcxtoppm $filename > $pnmfile
elif [$extension = tif]; then

332

tifftopnm $filename > $pnmfile
elif [$extension = gif]; then

giftopnm $filename > $pnmfile
else

echo "procfile: $filename is an unknown graphics file."
exit 1

fi
pnmtojpeg $pnmfile > $outfile
rm $pnmfile

Recall from the previous chapter that the expression
${filename%.*} deletes the extension from filename;
${filename##*.} deletes the basename and keeps the
extension.

Once the correct conversion is chosen, the script runs the
utility and writes the output to a temporary file. The
second to last line takes the temporary file and converts it
to a JPEG. The temporary file is then removed. Notice
that if the original file was a JPEG we just exit without
having to do any processing.

This script has a few problems. We'll look at improving it
later in this chapter.

333

File attribute checking

The other kind of operator that can be used in conditional
expressions checks a file for certain properties. There are
24 such operators. We will cover those of most general
interest here; the rest refer to arcana like sticky bits,
sockets, and file descriptors, and thus are of interest only
to systems hackers. Refer to Appendix B for the complete
list. Table 5-2 lists those that we will examine.

Table 5-2. File attribute operators

Operator True if...

-a file file exists

-d file file exists and is a directory

-e file file exists; same as - a

-f file file exists and is a regular file (i.e., not a
directory or other special type of file)

334

Operator True if...

-r file You have read permission on file

-s file file exists and is not empty

-w file You have write permission on file

-x file
You have execute permission on file, or
directory search permission if it is a
directory

-N file file was modified since it was last read

-O file You own file

-G file file 's group ID matches yours (or one of
yours, if you are in multiple groups)

file1 -nt
file2 file1 is newer than file2 [6]

335

Operator True if...

file1 -ot
file2 file1 is older than file2

[6] Specifically, the -nt and -ot operators compare
modification times of two files.

Before we get to an example, you should know that
conditional expressions inside [and] can also be
combined using the logical operators && and ||, just as
we saw with plain shell commands, in the previous
section entitled Section 5.1.3 ." For example:

if [condition] && [condition]; then

It's also possible to combine shell commands with
conditional expressions using logical operators, like this:

if command && [condition]; then
...

You can also negate the truth value of a conditional
expression by preceding it with an exclamation point (!),
so that ! expr evaluates to true only if expr is false.
Furthermore, you can make complex logical expressions
of conditional operators by grouping them with
parentheses (which must be "escaped" with backslashes

336

to prevent the shell from treating them specially), and by
using two logical operators we haven't seen yet: -a
(AND) and -o (OR).

The -a and -o operators are similar to the && and ||
operators used with exit statuses. However, unlike those
operators, -a and -o are only available inside a test
conditional expression.

Here is how we would use two of the file operators, a
logical operator, and a string operator to fix the problem
of duplicate stack entries in our pushd function. Instead of
having cd determine whether the argument given is a
valid directory—i.e., by returning with a bad exit status if
it's not—we can do the checking ourselves. Here is the
code:

pushd ()
{

dirname=$1
if [-n "$dirname"] && [\(-d "$dirname" \) -a \

\(-x "$dirname" \)]; then
DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"
cd $dirname
echo "$DIR_STACK"

else
echo "still in $PWD."

fi
}

The conditional expression evaluates to true only if the
argument $1 is not null (-n), a directory (-d) and the user
has permission to change to it (-x).[7] Notice that this
conditional handles the case where the argument is

337

missing ($dirname is null) first; if it is, the rest of the
condition is not executed. This is important because, if
we had just put:

if [\(-n "$dirname"\) -a \(-d "$dirname" \) -a \
\(-x "$dirname" \)]; then

the second condition, if null, would cause test to
complain and the function would exit prematurely.

Here is a more comprehensive example of the use of file
operators.

Task 5-1

Write a script that prints essentially the same
information as ls -l but in a more user-friendly way.

Although the code for this task looks at first sight quite
complicated, it is a straightforward application of many
of the file operators:

if [! -e "$1"]; then
echo "file $1 does not exist."
exit 1

fi
if [-d "$1"]; then

echo -n "$1 is a directory that you may "
if [! -x "$1"]; then

echo -n "not "
fi

338

echo "search."
elif [-f "$1"]; then

echo "$1 is a regular file."
else

echo "$1 is a special type of file."
fi
if [-O "$1"]; then

echo 'you own the file.'
else

echo 'you do not own the file.'
fi
if [-r "$1"]; then

echo 'you have read permission on the file.'
fi
if [-w "$1"]; then

echo 'you have write permission on the file.'
fi
if [-x "$1" -a ! -d "$1"]; then

echo 'you have execute permission on the file.'
fi

We'll call this script fileinfo. Here's how it works:

• The first conditional tests if the file given as
argument does not exist (the exclamation point is
the "not" operator; the spaces around it are
required). If the file does not exist, the script
prints an error message and exits with error
status.

• The second conditional tests if the file is a
directory. If so, the first echo prints part of a
message; remember that the -n option tells echo
not to print a LINEFEED at the end. The inner
conditional checks if you do not have search

339

permission on the directory. If you don't have
search permission, the word "not" is added to the
partial message. Then, the message is completed
with "search." and a LINEFEED.

• The elif clause checks if the file is a regular file;
if so, it prints a message.

• The else clause accounts for the various special
file types on recent UNIX systems, such as
sockets, devices, FIFO files, etc. We assume that
the casual user isn't interested in details of these.

• The next conditional tests to see if the file is
owned by you (i.e., if its owner ID is the same as
your login ID). If so, it prints a message saying
that you own it.

• The next two conditionals test for your read and
write permission on the file.

• The last conditional checks if you can execute the
file. It checks to see if you have execute
permission and that the file is not a directory. (If
the file were a directory, execute permission
would really mean directory search permission.)
In this test we haven't used any brackets to group
the tests and have relied on operator precedence.
Simply put, operator precedence is the order in
which the shell processes the operators. This is
exactly the same concept as arithmetic

340

precedence in mathematics, where multiply and
divide are done before addition and subtraction.
In our case, [-x "$1" -a ! -d "$1"] is equivalent
to [\(-x "$1" \) -a \(! -d "$1" \)]. The file tests
are done first, followed by any negations (!) and
followed by the AND and OR tests.

As an example of fileinfo's output, assume that you do an
ls -l of your current directory and it contains these lines:

-rwxr-xr-x 1 cam users 2987 Jan 10 20:43 adventure
-rw-r--r-- 1 cam users 30 Jan 10 21:45 alice
-r--r--r-- 1 root root 58379 Jan 11 21:30 core
drwxr-xr-x 2 cam users 1024 Jan 10 21:41 dodo

alice and core are regular files, dodo is a directory, and
adventure is a shell script. Typing fileinfo adventure
produces this output:

adventure is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.
you have execute permission on the file.

Typing fileinfo alice results in this:

alice is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.

Finally, typing fileinfo dodo results in this:

341

dodo is a directory that you may search.
you own the file.
you have read permission on the file.
you have write permission on the file.

Typing fileinfo core produces this:

core is a regular file.
you do not own the file.
you have read permission on the file.

342

Integer Conditionals

The shell also provides a set of arithmetic tests. These are
different from character string comparisons like < and >,
which compare lexicographic values of strings,[8] not
numeric values. For example, "6" is greater than "57"
lexicographically, just as "p" is greater than "ox," but of
course the opposite is true when they're compared as
integers.

The integer comparison operators are summarized in
Table 5-3.

Table 5-3. Arithmetic test operators

Test Comparison

-lt Less than

-le Less than or equal

-eq Equal

343

Test Comparison

-ge Greater than or equal

-gt Greater than

-ne Not equal

You'll find these to be of the most use in the context of
the integer variables we'll see in the next chapter. They're
necessary if you want to combine integer tests with other
types of tests within the same conditional expression.

However, the shell has a separate syntax for conditional
expressions that involve integers only. It's considerably
more efficient, so you should use it in preference to the
arithmetic test operators listed above. Again, we'll cover
the shell's integer conditionals in the next chapter.

[1] Because this is a convention and not a "law," there are
exceptions. For example, diff (find differences between
two files) returns 0 for "no differences," 1 for "differences
found," or 2 for an error such as an invalid filename
argument.

344

[2] The built-in command test is synonymous with [...].
For example, to test the equivalence of two strings you
can either put [string1 = string2] or test string1 =
string2.

[3] [[...]] is not available in versions of bash prior to 2.05.

[5] NetPBM is a free, portable graphics conversion utility
package. Further details can be found on the NetPBM
homepage http://netpbm.sourceforge.net/

[7] Remember that the same permission flag that
determines execute permission on a regular file
determines search permission on a directory. This is why
the -x operator checks both things depending on file type.

[8] "Lexicographic order" is really just "dictionary order."

345

for
The most obvious enhancement to make the previous
script is the ability to report on multiple files instead of
just one. Tests like -e and -d take only single arguments,
so we need a way of calling the code once for each file
given on the command line.

The way to do this—indeed, the way to do many things
with bash—is with a looping construct. The simplest and
most widely applicable of the shell's looping constructs is
the for loop. We'll use for to enhance fileinfo soon.

The for loop allows you to repeat a section of code a
fixed number of times. During each time through the code
(known as an iteration), a special variable called a loop
variable is set to a different value; this way each iteration
can do something slightly different.

The for loop is somewhat, but not entirely, similar to its
counterparts in conventional languages like C and Pascal.
The chief difference is that the shell's standard for loop
doesn't let you specify a number of times to iterate or a
range of values over which to iterate; instead, it only lets
you give a fixed list of values. In other words, you can't
do anything like this Pascal-type code, which executes
statements 10 times:

346

for x := 1 to 10 do
begin

statements...
end

However, the for loop is ideal for working with
arguments on the command line and with sets of files
(e.g., all files in a given directory). We'll look at an
example of each of these. But first, we'll show the syntax
for the for construct:

for name [in list]
do

statements that can use
$name...

done

The list is a list of names. (If in list is omitted, the list
defaults to "$@", i.e., the quoted list of command-line
arguments, but we'll always supply the in list for the sake
of clarity.) In our solutions to the following task, we'll
show two simple ways to specify lists.

Task 5-2

Task 4-4 used pattern matching and substitution to list
the directories in PATH, one to a line. Unfortunately,
old versions of bash don't have that particular pattern
operator. Write a general shell script, listpath, that prints
each directory in PATH, one per line. In addition, have

347

it print out information about each directory, such as the
permissions and the modification times.

The easiest way to do this is by changing the IFS variable
we saw in Chapter 4:

IFS=:

for dir in $PATH
do

ls -ld $dir
done

This sets the IFS to be a colon, which is the separator
used in PATH. The for loop loops through, setting dir to
each of the colon delimited fields in PATH. ls is used to
print out the directory name and associated information.
The -l parameter specifies the "long" format and the -d
tells ls to show only the directory itself and not its
contents.

In using this you might see an error generated by ls
saying, for example, ls: /usr/TeX/bin: No such file or
directory. It indicates that a directory in PATH doesn't
exist. We can modify the listpath script to check the
PATH variable for nonexistent directories by adding
some of the tests we saw earlier:

IFS=:

for dir in $PATH; do
if [-z "$dir"]; then dir=.; fi

348

if ! [-e "$dir"]; then
echo "$dir doesn't exist"

elif ! [-d "$dir"]; then
echo "$dir isn't a directory"

else
ls -ld $dir

fi
done

This time, as the script loops, we first check to see if the
length of $dir is zero (caused by having a value of :: in
the PATH). If it is, we set it to the current directory, then
check to see if the directory doesn't exist. If it doesn't, we
print out an appropriate message. Otherwise, we check to
see if the file is not a directory. If it isn't, we say so.

The foregoing illustrated a simple use of for, but it's
much more common to use for to iterate through a list of
command-line arguments. To show this, we can enhance
the fileinfo script above to accept multiple arguments.
First, we write a bit of "wrapper" code that does the
iteration:

for filename in "$@" ; do
finfo "$filename"
echo

done

Next, we make the original script into a function called
finfo:[9]

finfo ()
{

if [! -e "$1"]; then
print "file $1 does not exist."

349

return 1
fi
...

}

The complete script consists of the for loop code and the
above function, in either order; good programming style
dictates that the function definition should go first.

The fileinfo script works as follows: in the for statement,
"$@" is a list of all positional parameters. For each
argument, the body of the loop is run with filename set to
that argument. In other words, the function finfo is called
once for each value of $filename as its first argument
($1). The call to echo after the call to finfo merely prints a
blank line between sets of information about each file.

Given a directory with the same files as the earlier
example, typing fileinfo* would produce the following
output:

adventure is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.
you have execute permission on the file.

alice is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.

core is a regular file.
you do not own the file.
you have read permission on the file.

350

dodo is a directory that you may search.
you own the file.
you have read permission on the file.
you have write permission on the file.

Here is a programming task that exploits the other major
use of for.

Task 5-3

It is possible to print out all of the directories below a
given one by using the -R option of ls. Unfortunately,
this doesn't give much idea about the directory structure
because it prints all the files and directories line by line.
Write a script that performs a recursive directory listing
and produces output that gives an idea of the structure
for a small number of subdirectories.

We'll probably want output that looks something like this:

.
adventure

aaiw
dodo
duchess
hatter
march_hare
queen
tarts

biog
ttlg

351

red_queen
tweedledee
tweedledum

lewis.carroll

Each column represents a directory level. Entries below
and to the right of an entry are files and directories under
that directory. Files are just listed with no entries to their
right. This example shows that the directory adventure
and the file lewis.carroll are in the current directory; the
directories aaiw and ttlg, and the file biog are under
adventure, etc. To make life simple, we'll use TABs to
line the columns up and ignore any "bleed over" of
filenames from one column into an adjacent one.

We need to be able to traverse the directory hierarchy. To
do this easily we'll use a programming technique known
as recursion. Recursion is simply referencing something
from itself; in our case, calling a piece of code from itself.
For example, consider this script, tracedir, in your home
directory:

file=$1
echo $file

if [-d "$file"]; then
cd $file
~/tracedir $(ls)
cd ..

fi

First we copy and print the first argument. Then we test to
see if it is a directory. If it is, we cd to it and call the
script again with an argument of the files in that

352

directory. This script is recursive; when the first argument
is a directory, a new shell is invoked and a new script is
run on the new directory. The old script waits until the
new script returns, then the old script executes a cd back
up one level and exits. This happens in each invocation of
the tracedir script. The recursion will stop only when the
first argument isn't a directory.

Running this on the directory structure listed above with
the argument adventure will produce:

adventure
aaiw
dodo

dodo is a file and the script exits.

This script has a few problems, but it is the basis for the
solution to this task. One major problem with the script is
that it is very inefficient. Each time the script is called, a
new shell is created. We can improve on this by making
the script into a function, because (as you probably
remember from Chapter 4) functions are part of the shell
they are started from. We also need a way to set up the
TAB spacing. The easiest way is to have an initializing
script or function and call the recursive routine from that.
Let's look at this routine.

recls ()
{

singletab="\t"

for tryfile in "$@"; do

353

echo $tryfile
if [-d "$tryfile"]; then

thisfile=$tryfile
recdir $(command ls $tryfile)

fi
done

unset dir singletab tab
}

First, we set up a variable to hold the TAB character for
the echo command (Chapter 7 explains all of the options
and formatting commands you can use with echo). Then
we loop through each argument supplied to the function
and print it out. If it is a directory, we call our recursive
routine, supplying the list of files with ls. We have
introduced a new command at this point: command.
command is a shell built-in that disables function and
alias look-up. In this case, it is used to make sure that the
ls command is one from your command search path,
PATH, and not a function (for further information on
command see Chapter 7). After it's all over, we clean up
by unsetting the variables we have used.

Now we can expand on our earlier shell script.

recdir ()
{

tab=tabsingletab

for file in "$@"; do
echo -e tabfile
thisfile=$thisfile/$file

if [-d "$thisfile"]; then

354

recdir $(command ls $thisfile)
fi

thisfile=${thisfile%/*}
done

tab=${tab%"$singletab"}
}

Each time it is called, recdir loops through the files it is
given as arguments. For each one it prints the filename
and then, if the file is a directory, calls itself with
arguments set to the contents of the directory. There are
two details that have to be taken care of: the number of
TABs to use, and the pathname of the "current" directory
in the recursion.

Each time we go down a level in the directory hierarchy
we want to add a TAB character, so we append a TAB to
the variable tab every time we enter recdir. Likewise,
when we exit recdir we are moving up a directory level,
so we remove the TAB when we leave the function.
Initially, tab is not set, so the first time recdir is called,
tab will be set to one TAB. If we recurse into a lower
directory, recdir will be called again and another TAB
will be appended. Remember that tab is a global variable,
so it will grow and shrink in TABs for every entry and
exit of recdir. The -e option to echo tells it to recognize
escaped formatting characters, in our case the TAB
character, \t.

In this version of the recursive routine we haven't used cd
to move between directories. That means that an ls of a

355

directory will have to be supplied with a relative path to
files further down in the hierarchy. To do this, we need to
keep track of the directory we are currently examining.
The initialization routine sets the variable thisfile to the
directory name each time a directory is found while
looping. This variable is then used in the recursive routine
to keep the relative pathname of the current file being
examined. On each iteration of the loop, thisfile has the
current filename appended to it, and at the end of the loop
the filename is removed.

You might like to think of ways to modify the behavior
and improve the output of this code. Here are some
programming challenges:

1. In the current version, there is no way to
determine if biog is a file or a directory. An
empty directory looks no different to a file in the
listing. Change the output so it appends a / to
each directory name when it displays it.

2. Modify the code so that it only recurses down a
maximum of eight subdirectories (which is about
the maximum before the lines overflow the
right-hand side of the screen). Hint: think about
how TABs have been implemented.

3. Change the output so it includes dashed lines and
adds a blank line after each directory, thus:

.
|

356

|-------adventure
| |
| |-------aaiw
| | |
| | |-------dodo
| | |-------duchess
| | |-------hatter
| | |-------march_hare
| | |-------queen
| | |-------tarts
| |
| |-------biog
...

4. Hint: you need at least two other variables that
contain the characters "|" and "-".

At the start of this section we pointed out that the for loop
in its standard form wasn't capable of iterating over a
specified range of values as can be done in most
programming languages. bash 2.0 introduced a new style
of for loop which caters for this task; the arithmetic for
loop. Well come back to it in the next chapter when we
look at arithmetic operations.

[9] A function can have the same name as a script;
however, this isn't good programming practice.

357

case
The next flow-control construct we will cover is case.
While the case statement in Pascal and the similar switch
statement in Java and C can be used to test simple values
like integers and characters, bash's case construct lets you
test strings against patterns that can contain wildcard
characters. Like its conventional-language counterparts,
case lets you express a series of if-then-else type
statements in a concise way.

The syntax of case is as follows:

case expression
in
pattern1
)
statements ;;
pattern2

)
statements ;;
...

esac

Any of the patterns can actually be several patterns
separated by pipe characters (|). If expression matches
one of the patterns, its corresponding statements are
executed. If there are several patterns separated by pipe
characters, the expression can match any of them in order
for the associated statements to be run. The patterns are

358

checked in order until a match is found; if none is found,
nothing happens.

This construct should become clearer with an example.
Let's revisit our solution to Task 4-2 and the additions to
it presented earlier in this chapter (our graphics utility).
Remember that we wrote some code that processed input
files according to their suffixes (.pcx for PCX format, .gif
for GIF format, etc.).

We can improve upon this solution in two ways. Firstly,
we can use a for loop to allow multiple files to be
processed one at a time; secondly, we can use the case
construct to streamline the code:

for filename in "$@"; do
pnmfile=${filename%.*}.ppm
case $filename in

*.jpg) exit 0 ;;
*.tga) tgatoppm $filename > $pnmfile ;;
*.xpm) xpmtoppm $filename > $pnmfile ;;
*.pcx) pcxtoppm $filename > $pnmfile ;;
*.tif) tifftopnm $filename > $pnmfile ;;
*.gif) giftopnm $filename > $pnmfile ;;

*) echo "procfile: $filename is an unknown graphics file."
exit 1 ;;

esac
outfile=${pnmfile%.ppm}.new.jpg
pnmtojpeg $pnmfile > $outfile
rm $pnmfile

done

359

The case construct in this code does the same thing as the
if statements that we saw in the earlier version. It is,
however, clearer and easier to follow.

The first six patterns in the case statement match the
various file extensions that we wish to process. The last
pattern matches anything that hasn't already been
matched by the previous statements. It is essentially a
catchall and is analogous to the default case in C.

There is another slight difference to the previous version;
we have moved the pattern matching and replacement
inside the added for loop that processes all of the
command-line arguments. Each time we pass through the
loop, we want to create a temporary and final file with a
name based on the name in the current command-line
argument.

We'll return to this example in Chapter 6, when we
further develop the script and discuss how to handle dash
options on the command line. In the meantime, here is a
task that requires that we use case.

Task 5-4

Write a function that implements the Korn shell's cd old
new. cd takes the pathname of the current directory and
tries to find the string old. If it finds it, it substitutes new
and attempts to change to the resulting directory.

360

We can implement this by using a case statement to
check the number of arguments and the built-in cd
command to do the actual change of directory.

Here is the code:[10]

cd()
{

case "$#" in
0 | 1) builtin cd $1 ;;
2) newdir=${PWD//$1/$2}

case "$newdir" in
$PWD) echo "bash: cd: bad substitution" >&2 ;

return 1 ;;
*) builtin cd "$newdir" ;;

esac ;;
*) echo "bash: cd: wrong arg count" 1>&2 ; return 1 ;;

esac
}

The case statement in this task tests the number of
arguments to our cd command against three alternatives.

For zero or one arguments, we want our cd to work just
like the built-in one. The first alternative in the case
statement does this. It includes something we haven't
used so far; the pipe symbol between the 0 and 1 means
that either pattern is an acceptable match. If the number
of arguments is either of these, the built-in cd is executed.

The next alternative is for two arguments, which is where
we'll add the new functionality to cd. The first thing that
has to be done is finding and replacing the old string with
the new one. We use the pattern matching and

361

replacement that we saw in the last chapter, the result
being assigned to newdir. If the substitution didn't take
place, the pathname will be unchanged. We'll use this fact
in the next few lines.

Another case statement chooses between performing the
cd or reporting an error because the new directory is
unchanged. The * alternative is a catchall for anything
other than the current pathname (caught by the first
alternative).

You might notice one small problem with this code: if
your old and new strings are the same you'll get bash::
cd: bad substitution. It should just leave you in the same
directory with no error message, but because the directory
path doesn't change, it uses the first alternative in the
inner case statement. The problem lies in knowing if sed
has performed a substitution or not. You might like to
think about ways to fix this problem (hint: you could use
grep to check whether the pathname has the old string in
it).

The last alternative in the outer case statement prints an
error message if there are more than two arguments.

[10] To make the function a little clearer, we've used some
advanced I/O redirection. I/O redirection is covered in
Chapter 7.

362

select
All of the flow-control constructs we have seen so far are
also available in the Bourne shell, and the C shell has
equivalents with different syntax. Our next construct,
select, is available only in the Korn shell and bash;[11]

moreover, it has no analogy in conventional programming
languages.

select allows you to generate simple menus easily. It has
concise syntax, but it does quite a lot of work. The syntax
is:

select name
[in
list
]

do
statements that can use

$name...
done

This is the same syntax as for except for the keyword
select. And like for, you can omit the in list and it will
default to "$@", i.e., the list of quoted command-line
arguments. Here is what select does:

1. Generates a menu of each item in list, formatted
with numbers for each choice

2. Prompts the user for a number

363

3. Stores the selected choice in the variable name
and the selected number in the built-in variable
REPLY

4. Executes the statements in the body

5. Repeats the process forever (but see below for
how to exit)

Here is a task that adds another command to our pushd
and popd utilities.

Task 5-5

Write a function that allows the user to select a directory
from a list of directories currently in the pushd directory
stack. The selected directory is moved to the front of the
stack and becomes the current working directory.

The display and selection of directories is best handled by
using select. We can start off with something along the
lines of:[12]

selectd ()
{

PS3='directory? '
select selection in $DIR_STACK; do

if [$selection]; then
#statements that manipulate the stack...
break

364

else
echo 'invalid selection.'

fi
done

}

If you type DIR_STACK="/usr /home /bin" and execute
this function, you'll see:

1) /usr
2) /home
3) /bin
directory?

The built-in shell variable PS3 contains the prompt string
that select uses; its default value is the not particularly
useful "#?". So the first line of the above code sets it to a
more relevant value.

The select statement constructs the menu from the list of
choices. If the user enters a valid number (from 1 to the
number of directories), then the variable selection is set
to the corresponding value; otherwise it is null. (If the
user just presses RETURN, the shell prints the menu
again.)

The code in the loop body checks if selection is non-null.
If so, it executes the statements we will add in a short
while; then the break statement exits the select loop. If
selection is null, the code prints an error message and
repeats the menu and prompt.

The break statement is the usual way of exiting a select
loop. Actually (like its analog in Java and C), it can be

365

used to exit any surrounding control structure we've seen
so far (except case, where the double semicolons act like
break) as well as the while and until we will see soon.
We haven't introduced break until now because it is
considered bad coding style to use it to exit a loop.
However, it can make code easier to read if used
judiciously. break is necessary for exiting select when the
user makes a valid choice. [13]

Now we'll add the missing pieces to the code:

selectd ()
{

PS3='directory? '
dirstack=" $DIR_STACK "

select selection in $dirstack; do
if [$selection]; then

DIR_STACK="$selection${dirstack%% $selection *}"
DIR_STACK="$DIR_STACK ${dirstack##* $selection }"
DIR_STACK=${DIR_STACK% }
cd $selection
break

else
echo 'invalid selection.'

fi
done

}

The first two lines initialize environment variables.
dirstack is a copy of DIR_STACK with spaces
appended at the beginning and end so that each directory
in the list is of the form space directory space. This form
simplifies the code when we come to manipulating the
directory stack.

366

The select and if statements are the same as in our initial
function. The new code inside the if uses bash's
pattern-matching capability to manipulate the directory
stack.

The first statement sets DIR_STACK to selection,
followed by dirstack with everything from selection to
the end of the list removed. The second statement adds
everything in the list from the directory following
selection to the end of DIR_STACK. The next line
removes the trailing space that was appended at the start.
To complete the operation, a cd is performed to the new
directory, followed by a break to exit the select code.

As an example of the list manipulation performed in this
function, consider a DIR_STACK set to /home /bin
/usr2. In this case, dirstack would become /home /bin
/usr2. Typing selectd would result in:

$ selectd
1) /home
2) /bin
3) /usr2
directory?

After selecting /bin from the list, the first statement inside
the if section sets DIR_STACK to /bin followed by
dirstack with everything from /bin onwards removed,
i.e., /home.

The second statement then takes DIR_STACK and
appends everything in dirstack following /bin (i.e., /usr2)

367

to it. The value of DIR_STACK becomes /bin /home
/usr2. The trailing space is removed in the next line.

[11] select is not available in bash versions prior to 1.14.

[12] Versions of bash prior to 1.14.3 have a serious bug
with select. These versions will crash if the select list is
empty. In this case, surround selects with a test for a null
list.

[13] A user can also type CTRL-D (for end-of-input) to
get out of a select loop. This gives the user a uniform way
of exiting, but it doesn't help the shell programmer much.

368

while and until
The remaining two flow control constructs bash provides
are while and until. These are similar; they both allow a
section of code to be run repetitively while (or until) a
certain condition becomes true. They also resemble
analogous constructs in Pascal (while/do and
repeat/until) and C (while and do/until).

while and until are actually most useful when combined
with features we will see in the next chapter, such as
integer arithmetic, input/output of variables, and
command-line processing. Yet we can show a useful
example even with what we have covered so far.

The syntax for while is:

while condition
do
statements...
done

For until, just substitute until for while in the above
example. As with if, the condition is really a list of
statements that are run; the exit status of the last one is
used as the value of the condition. You can use a
conditional with test here, just as you can with if.

Note that the only difference between while and until is
the way the condition is handled. In while, the loop

369

executes as long as the condition is true; in until, it runs
as long as the condition is false. The until condition is
checked at the top of the loop, not at the bottom as it is in
analogous constructs in C and Pascal.

The result is that you can convert any until into a while
by simply negating the condition. The only place where
until might be more meaningful is something like this:

until command
; do
statements...
done

The meaning of this is essentially, "Do statements until
command runs correctly." This is not a likely
contingency.

Here is an earlier task that can be rewritten using a while.

Task 5-6

Reimplement Task 5-2 without the use of the IFS
variable.

We can use the while construct and pattern matching to
traverse the PATH list:

path=$PATH:

370

while [$path]; do
ls -ld ${path%%:*}
path=${path#*:}

done

The first line copies PATH to a temporary copy, path,
and appends a colon to it. Normally colons are used only
between directories in PATH; adding one to the end
makes the code simple.

Inside the while loop we display the directory with ls as
we did in Task 5-2. path is then updated by removing the
first directory pathname and colon (which is why we
needed to append the colon in the first line of the script).
The while will keep looping until $path expands to
nothing (the empty string ""), which occurs once the last
directory in path has been listed.

Here is another task that is a good candidate for until.

Task 5-7

Write a script that attempts to copy a file to a directory
and, if it fails, waits five seconds, then tries again,
continuing until it succeeds.

Here is the code:

until cp $1 $2; do
echo 'Attempt to copy failed. waiting...'

371

sleep 5
done

This is a fairly simple use of until. First, we use the cp
command to perform the copy for us. If it can't perform
the copy for any reason, it will return with a non-zero exit
code. We set our until loop so that if the result of the
copy is not 0 then the script prints a message and waits
five seconds.

As we said earlier, an until loop can be converted to a
while by the use of the ! operator:

while ! cp $1 $2; do
echo 'Attempt to copy failed. waiting...'
sleep 5

done

In our opinion, you'll seldom need to use until; therefore,
we'll use while throughout the rest of this book. We'll see
further use of the while construct in Chapter 7.

372

Chapter 6. Command-Line
Options and Typed
Variables
You should have a healthy grasp of shell programming
techniques now that you have gone through the previous
chapters. What you have learned up to this point enables
you to write many non-trivial, useful shell scripts and
functions.

Still, you may have noticed some remaining gaps in the
knowledge you need to write shell code that behaves like
the UNIX commands you are used to. In particular, if you
are an experienced UNIX user, it might have occurred to
you that none of the example scripts shown so far have
the ability to handle options preceded by a dash (-) on the
command line. And if you program in a conventional
language like C or Pascal, you will have noticed that the
only type of data that we have seen in shell variables is
character strings; we haven't seen how to do arithmetic,
for example.

These capabilities are certainly crucial to the shell's
ability to function as a useful UNIX programming
language. In this chapter, we will show how bash
supports these and related features.

373

Command-Line Options
We have already seen many examples of the positional
parameters (variables called 1, 2, 3, etc.) that the shell
uses to store the command-line arguments to a shell script
or function when it runs. We have also seen related
variables like * (for the string of all arguments) and # (for
the number of arguments).

Indeed, these variables hold all of the information on the
user's command-line. But consider what happens when
options are involved. Typical UNIX commands have the
form command [-options]args, meaning that there can be
0 or more options. If a shell script processes the
command teatime alice hatter, then $1 is "alice" and $2
is "hatter". But if the command is teatime -o alice hatter,
then $1 is -o, $2 is "alice", and $3 is "hatter".

You might think you could write code like this to handle
it:

if [$1 = -o]; then
code that processes the -o option
1=$2
2=$3

fi

normal processing of $1 and $2...

But this code has several problems. First, assignments
like 1=$2 are illegal because positional parameters are
read-only. Even if they were legal, another problem is

374

that this kind of code imposes limitations on how many
arguments the script can handle—which is very unwise.
Furthermore, if this command had several possible
options, the code to handle all of them would get very
messy very quickly.

shift

Luckily, the shell provides a way around this problem.
The command shift performs the function of:

1=$2
2=$3
...

for every argument, regardless of how many there are. If
you supply a numeric argument to shift, it will shift the
arguments that many times over; for example, shift 3 has
this effect:

1=$4
2=$5
...

This leads immediately to some code that handles a single
option (call it -o) and arbitrarily many arguments:

if [$1 = -o]; then
process the -o option
shift

fi
normal processing of arguments...

375

After the if construct, $1, $2, etc., are set to the correct
arguments.

We can use shift together with the programming features
we have seen so far to implement simple option schemes.
However, we will need additional help when things get
more complex. The getopts built-in command, which we
will introduce later, provides this help.

shift by itself gives us enough power to implement the -
N option to the highest script we saw in Chapter 4 (Task
4-1). Recall that this script takes an input file that lists
artists and the number of albums you have by them. It
sorts the list and prints out the N highest numbers, in
descending order. The code that does the actual data
processing is:

filename=$1
howmany=${2:-10}
sort -nr $filename | head -$howmany

Our original syntax for calling this script was highest
filename [- N], where N defaults to 10 if omitted. Let's
change this to a more conventional UNIX syntax, in
which options are given before arguments: highest [- N]
filename. Here is how we would write the script with this
syntax:

if [-n "$(echo $1 | grep '^-[0-9][0-9]*$')"]; then
howmany=$1
shift

elif [-n "$(echo $1 | grep '^-')"]; then
print 'usage: highest [-N] filename'

376

exit 1
else

howmany="-10"
fi

filename=$1
sort -nr $filename | head $howmany

This uses the grep search utility to test if $1 matches the
appropriate pattern. To do this we provide the regular
expression ^-[0-9][0-9]*$ to grep, which is interpreted as
"an initial dash followed by a digit, optionally followed
by one or more digits." If a match is found then grep will
return the match and the test will be true, otherwise grep
will return nothing and processing will pass to the elif
test. Notice that we have enclosed the regular expression
in single quotes to stop the shell from interpreting the $
and *, and pass them through to grep unmodified.

If $1 doesn't match, we test to see if it's an option at all,
i.e., if it matches the pattern - followed by anything else.
If it does, then it's invalid; we print an error message and
exit with error status. If we reach the final (else) case, we
assume that $1 is a filename and treat it as such in the
ensuing code. The rest of the script processes the data as
before.

We can extend what we have learned so far to a general
technique for handling multiple options. For the sake of
concreteness, assume that our script is called alice and we
want to handle the options -a, -b, and -c:

377

while [-n "$(echo $1 | grep '-')"]; do
case $1 in

-a) process option -a
;;

-b) process option -b
;;

-c) process option -c
;;

*) echo 'usage: alice [-a] [-b] [-c] args...'
exit 1

esac
shift

done
normal processing of arguments...

This code checks $1 repeatedly as long as it starts with a
dash (-). Then the case construct runs the appropriate
code depending on which option $1 is. If the option is
invalid—i.e., if it starts with a dash but isn't -a, -b, or
-c—then the script prints a usage message and returns
with an error exit status.

After each option is processed, the arguments are shifted
over. The result is that the positional parameters are set to
the actual arguments when the while loop finishes.

Notice that this code is capable of handling options of
arbitrary length, not just one letter (e.g., -adventure
instead of -a).

378

Options with Arguments

We need to add one more ingredient to make option
processing really useful. Recall that many commands
have options that take their own arguments. For example,
the cut command, on which we relied heavily in Chapter
4, accepts the option -d with an argument that determines
the field delimiter (if it is not the default TAB). To handle
this type of option, we just use another shift when we are
processing the option.

Assume that, in our alice script, the option -b requires its
own argument. Here is the modified code that will
process it:

while [-n "$(echo $1 | grep '-')"]; do
case $1 in

-a) process option -a ;;
-b) process option -b

$2 is the option's argument
shift ;;

-c) process option -c ;;
*) echo 'usage: alice [-a] [-b barg] [-c] args...'

exit 1
esac
shift

done

normal processing of arguments...

379

getopts

So far, we have a complete, but constrained, way of
handling command-line options. The above code does not
allow a user to combine arguments with a single dash,
e.g., -abc instead of -a -b -c. It also doesn't allow one to
specify arguments to options without a space in between,
e.g., -barg in addition to -b arg.[1]

The shell provides a built-in way to deal with multiple
complex options without these constraints. The built-in
command getopts [2] can be used as the condition of the
while in an option-processing loop. Given a specification
of which options are valid and which require their own
arguments, it sets up the body of the loop to process each
option in turn.

getopts takes two arguments. The first is a string that can
contain letters and colons. Each letter is a valid option; if
a letter is followed by a colon, the option requires an
argument. getopts picks options off the command line
and assigns each one (without the leading dash) to a
variable whose name is getopts's second argument. As
long as there are options left to process, getopts will
return exit status 0; when the options are exhausted, it
returns exit status 1, causing the while loop to exit.

380

getopts does a few other things that make option
processing easier; we'll encounter them as we examine
how to use getopts in this example:

while getopts ":ab:c" opt; do
case $opt in

a) process option -a
;;

b) process option -b
$OPTARG is the option's argument
;;

c) process option -c
;;

\?) echo 'usage: alice [-a] [-b barg] [-c] args...'
exit 1

esac
done
shift $(($OPTIND - 1))
normal processing of arguments...

The call to getopts in the while condition sets up the loop
to accept the options -a, -b, and -c, and specifies that -b
takes an argument. (We will explain the : that starts the
option string in a moment.) Each time the loop body is
executed, it will have the latest option available, without
a dash (-), in the variable opt.

If the user types an invalid option, getopts normally
prints an unfortunate error message (of the form cmd:
getopts: illegal option — o) and sets opt to ?. However
if you begin the option letter string with a colon, getopts
won't print the message.[3] We recommend that you
specify the colon and provide your own error message in
a case that handles ?, as above.

381

We have modified the code in the case construct to reflect
what getopts does. But notice that there are no more shift
statements inside the while loop: getopts does not rely on
shifts to keep track of where it is. It is unnecessary to
shift arguments over until getopts is finished, i.e., until
the while loop exits.

If an option has an argument, getopts stores it in the
variable OPTARG, which can be used in the code that
processes the option.

The one shift statement left is after the while loop.
getopts stores in the variable OPTIND the number of the
next argument to be processed; in this case, that's the
number of the first (non-option) command-line argument.
For example, if the command line were alice -ab rabbit,
then $OPTIND would be "3". If it were alice -a -b
rabbit, then $OPTIND would be "4".

The expression $(($OPTIND - 1)) is an arithmetic
expression (as we'll see later in this chapter) equal to
$OPTIND minus 1. This value is used as the argument to
shift. The result is that the correct number of arguments
are shifted out of the way, leaving the "real" arguments as
$1, $2, etc.

Before we continue, now is a good time to summarize
everything getopts does:

1. Its first argument is a string containing all valid
option letters. If an option requires an argument,

382

a colon follows its letter in the string. An initial
colon causes getopts not to print an error
message when the user gives an invalid option.

2. Its second argument is the name of a variable that
will hold each option letter (without any leading
dash) as it is processed.

3. If an option takes an argument, the argument is
stored in the variable OPTARG.

4. The variable OPTIND contains a number equal
to the next command-line argument to be
processed. After getopts is done, it equals the
number of the first "real" argument.

The advantages of getopts are that it minimizes extra
code necessary to process options and fully supports the
standard UNIX option syntax (as specified in intro of the
User's Manual).

As a more concrete example, let's return to our graphics
utility (Task 4-2). So far, we have given our script the
ability to process various types of graphics files such as
PCX files (ending with .pcx), GIF files (.gif), XPM files
(.xpm), etc. As a reminder, here is what we have coded in
the script so far:

filename=$1

if [-z $filename]; then
echo "procfile: No file specified"

383

exit 1
fi

for filename in "$@"; do
pnmfile=${filename%.*}.ppm
case $filename in

*.jpg) exit 0 ;;
*.tga) tgatoppm $filename > $pnmfile ;;
*.xpm) xpmtoppm $filename > $pnmfile ;;
*.pcx) pcxtoppm $filename > $pnmfile ;;
*.tif) tifftopnm $filename > $pnmfile ;;
*.gif) giftopnm $filename > $pnmfile ;;

*) echo "procfile: $filename is an unknown graphics file."
exit 1 ;;

esac
outfile=${pnmfile%.ppm}.new.jpg
pnmtojpeg $pnmfile > $outfile
rm $pnmfile

done

This script works quite well, in that it will convert the
various different graphics files that we have lying around
into JPEG files suitable for our web page. However,
NetPBM has a whole range of useful utilities besides file
converters that we could use on the images. It would be
nice to be able to select some of them from our script.

Things we might wish to do to modify the images include
changing the size and placing a border around them. We
want to make the script as flexible as possible; we will
want to change the size of the resulting images and we
might not want a border around every one of them, so we
need to be able to specify to the script what it should do.
This is where the command-line option processing will
come in useful.

384

We can change the size of an image by using the
NetPBM utility pnmscale. You'll recall from the last
chapter that the NetPBM package has its own format
called PNM, the Portable Anymap. The fancy utilities
we'll be using to change the size and add borders work on
PNMs. Fortunately, our script already converts the
various formats we give it into PNMs. Besides a PNM
file, pnmscale also requires some arguments telling it
how to scale the image.[4] There are various different
ways to do this, but the one we'll choose is -xysize which
takes a horizontal and a vertical size in pixels for the final
image.[5]

The other utility we need is pnmmargin, which places a
colored border around an image. Its arguments are the
width of the border in pixels and the color of the border.

Our graphics utility will need some options to reflect the
ones we have just seen. -s size will specify a size into
which the final image will fit (minus any border), -w
width will specify the width of the border around the
image, and -c color-name will specify the color of the
border.

Here is the code for the script procimage that includes the
option processing:

Set up the defaults
size=320
width=1
colour="-color black"
usage="Usage: $0 [-s N] [-w N] [-c S] imagefile..."

385

while getopts ":s:w:c:" opt; do
case $opt in

s) size=$OPTARG ;;
w) width=$OPTARG ;;
c) colour="-color $OPTARG" ;;
\?) echo $usage

exit 1 ;;
esac

done
shift $(($OPTIND - 1))
if [-z "$@"]; then

echo $usage
exit 1

fi
Process the input files
for filename in "$*"; do

ppmfile=${filename%.*}.ppm
case $filename in

*.gif) giftopnm $filename > $ppmfile ;;
*.tga) tgatoppm $filename > $ppmfile ;;
*.xpm) xpmtoppm $filename > $ppmfile ;;
*.pcx) pcxtoppm $filename > $ppmfile ;;
*.tif) tifftopnm $filename > $ppmfile ;;
*.jpg) jpegtopnm -quiet $filename > $ppmfile ;;

*) echo "$0: Unknown filetype '${filename##*.}'"
exit 1;;

esac
outfile=${ppmfile%.ppm}.new.jpg
pnmscale -quiet -xysize $size $size $ppmfile |

pnmmargin $colour $width |
pnmtojpeg > $outfile

rm $ppmfile
done

The first several lines of this script initialize variables
with default settings. The defaults set the image size to
320 pixels and a black border of width 1 pixel.

386

The while, getopts, and case constructs process the
options in the same way as in the previous example. The
code for the first three options assigns the respective
argument to a variable (replacing the default value). The
last option is a catchall for any invalid options.

The rest of the code works in much the same way as in
the previous example except we have added the pnmscale
and pnmmargin utilities in a processing pipeline at the
end.

The script also now generates a different filename; it
appends .new.jpg to the basename. This allows us to
process a JPEG file as input, applying scaling and
borders, and write it out without destroying the original
file.

This version doesn't address every issue, e.g., what if we
don't want any scaling to be performed? We'll return to
this script and develop it further in the next chapter.

[1] Although most UNIX commands allow this, it is
actually contrary to the Command Syntax Standard Rules
in intro of the User's Manual.

[2] getopts replaces the external command getopt, used in
Bourne shell programming; getopts is better integrated
into the shell's syntax and runs more efficiently. C
programmers will recognize getopts as very similar to the
standard library routine getopt.

387

[3] You can also turn off the getopts messages by setting
the environment variable OPTERR to 0. We will
continue to use the colon method in this book.

[4] We'll also need the -quiet option, which suppresses
diagnostic output from some NetPBM utilities.

[5] Actually, -xysize fits the image into a box defined by
its arguments without changing the aspect ratio of the
image, i.e., without stretching the image horizontally or
vertically. For example, if you had an image of size 200
by 100 pixels and you processed it with pnmscale -xysize
100 100, you'd end up with an image of size 100 by 50
pixels.

388

Typed Variables
So far we've seen how bash variables can be assigned
textual values. Variables can also have other attributes,
including being read only and being of type integer.

You can set variable attributes with the declare built-in.
[6] Table 6-1 summarizes the available options with
declare.[7] A - turns the option on, while + turns it off.

Table 6-1. Declare options

Option Meaning

-a The variables are treated as arrays

-f Use function names only

-F Display function names without definitions

-i The variables are treated as integers

389

Option Meaning

-r Makes the variables read-only

-x Marks the variables for export via the
environment

Typing declare on its own displays the values of all
variables in the environment. The -f option limits this
display to the function names and definitions currently in
the environment. -F limits it further by displaying only
the function names.

The -a option declares arrays—a variable type that we
haven't seen yet, but will be discussed shortly.

The -i option is used to create an integer variable, one that
holds numeric values and can be used in and modified by
arithmetic operations. Consider this example:

$ val1=12 val2=5
$ result1=val*val2
$ echo $result1
val1*val2
$
$ declare -i val3=12 val4=5
$ declare -i result2
$ result2=val3*val4

390

$ echo $result2
60

In the first example, the variables are ordinary shell
variables and the result is just the string "val1*val2". In
the second example, all of the variables have been
declared as type integer. The variable result contains the
result of the arithmetic computation twelve multiplied by
five. Actually, we didn't need to declare val3 and val4 as
type integer. Anything being assigned to result2 is
interpreted as an arithmetic statement and evaluation is
attempted.

The -x option to declare operates in the same way as the
export built-in that we saw in Chapter 3. It allows the
listed variables to be exported outside the current shell
environment.

The -r option creates a read-only variable, one that cannot
have its value changed by subsequent assignment
statements and cannot be unset.

A related built-in is readonly name ... which operates in
exactly the same way as declare -r. readonly has three
options: -f, which makes readonly interpret the name
arguments as function names rather than variable names,
-p, which makes the built-in print a list of all read-only
names, and -a, which interprets the name arguments as
arrays.

Lastly, variables declared in a function are local to that
function, just like using local to declare them.

391

[6] The typeset built-in is synonymous with declare but is
considered obsolete.

[7] The -a and -F options are not available in bash prior to
version 2.0.

392

Integer Variables and
Arithmetic
The expression $(($OPTIND - 1)) in the last graphics
utility example shows another way that the shell can do
integer arithmetic. As you might guess, the shell
interprets words surrounded by $((and)) as arithmetic
expressions.[8] Variables in arithmetic expressions do not
need to be preceded by dollar signs, though it is not
wrong to do so.

Arithmetic expressions are evaluated inside double
quotes, like tildes, variables, and command substitutions.
We're finally in a position to state the definitive rule about
quoting strings: when in doubt, enclose a string in single
quotes, unless it contains tildes or any expression
involving a dollar sign, in which case you should use
double quotes.

For example, the date command on modern versions of
UNIX accepts arguments that tell it how to format its
output. The argument +%j tells it to print the day of the
year, i.e., the number of days since December 31st of the
previous year.

We can use +%j to print a little holiday anticipation
message:

393

echo "Only $(((365-$(date +%j)) / 7)) weeks until the New Year"

We'll show where this fits in the overall scheme of
command-line processing in Chapter 7.

The arithmetic expression feature is built into bash's
syntax, and was available in the Bourne shell (most
versions) only through the external command expr. Thus
it is yet another example of a desirable feature provided
by an external command being better integrated into the
shell. getopts, as we have already seen, is another
example of this design trend.

bash arithmetic expressions are equivalent to their
counterparts in the Java and C languages.[9] Precedence
and associativity are the same as in C. Table 6-2 shows
the arithmetic operators that are supported. Although
some of these are (or contain) special characters, there is
no need to backslash-escape them, because they are
within the $((...)) syntax.

Table 6-2. Arithmetic operators

Operator Meaning

++ Increment by one (prefix and postfix)

— Decrement by one (prefix and postfix)

394

Operator Meaning

+ Plus

- Minus

* Multiplication

/ Division (with truncation)

% Remainder

** Exponentiation[10]

<< Bit-shift left

>> Bit-shift right

& Bitwise and

395

Operator Meaning

| Bitwise or

~ Bitwise not

! Logical not

^ Bitwise exclusive or

, Sequential evaluation

[10] Note that ** is not in the C language.

The ++ and - operators are useful when you want to
increment or decrement a value by one.[11] They work the
same as in Java and C, e.g., value++ increments value by
1. This is called post-increment; there is also a
pre-increment: ++value. The difference becomes evident
with an example:

$ i=0
$ echo $i

396

0
$ echo $((i++))
0
$ echo $i
1
$ echo $((++i))
2
$ echo $i
2

In both cases the value has been incremented by one.
However, in the first case (post-increment) the value of
the variable was passed to echo and then the variable was
incremented. In the second case (pre-increment) the
increment was performed and then the variable passed to
echo.

Parentheses can be used to group subexpressions. The
arithmetic expression syntax also (as in C) supports
relational operators as "truth values" of 1 for true and 0
for false. Table 6-3 shows the relational operators and the
logical operators that can be used to combine relational
expressions.

Table 6-3. Relational operators

Operator Meaning

< Less than

397

Operator Meaning

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

&& Logical and

|| Logical or

For example, $((3 > 2)) has the value 1; $(((3 > 2) || (4
<= 1))) also has the value 1, since at least one of the two
subexpressions is true.

398

The shell also supports base N numbers, where N can be
from 2 to 36. The notation B # N means "N base B". Of
course, if you omit the B #, the base defaults to 10.

Arithmetic Conditionals

In Chapter 5, we saw how to compare strings by the use
of [...] notation (or with the test built-in). Arithmetic
conditions can also be tested in this way. However, the
tests have to be carried out with their own operators.
These are shown in Table 6-4.

Table 6-4. Test relational operators

Operator Meaning

-lt Less than

-gt Greater than

-le Less than or equal to

-ge Greater than or equal to

399

Operator Meaning

-eq Equal to

-ne Not equal to

And as with string comparisons, the arithmetic test
returns a result of true or false; 0 if true, 1 otherwise. So,
for example, [3 -gt 2] produces exit status 0, as does [\(
3 -gt 2 \) || \(4 -le 1 \)], but [\(3 -gt 2 \) && \(4 -le 1 \)
] has exit status 1 since the second subexpression isn't
true.

In these examples we have had to escape the parentheses
and pass them to test as separate arguments. As you can
see, the result can look rather unreadable if there are
many parentheses.

Another way to make arithmetic tests is to use the $((...))
form to encapsulate the condition. For example: [$(((3 >
2) && (4 <= 1))) = 1]. This evaluates the conditionals
and then compares the resulting value to 1 (true).[12]

There is an even neater and more efficient way of
performing an arithmetic test: by using the ((...))
construct.[13] This returns an exit status of 0 if the
expression is true, and 1 otherwise.

400

The above expression using this construct becomes (((3
> 2) && (4 <= 1))). This example returns with an exit
status of 1 because, as we said, the second subexpression
is false.

401

Arithmetic Variables and
Assignment

As we saw earlier, you can define integer variables by
using declare. You can also evaluate arithmetic
expressions and assign them to variables with the use of
let. The syntax is:

let intvar=expression

It is not necessary (because it's actually redundant) to
surround the expression with $((and)) in a let statement.
let doesn't create a variable of type integer; it only causes
the expression following the assignment to be interpreted
as an arithmetic one. As with any variable assignment,
there must not be any space on either side of the equal
sign (=). It is good practice to surround expressions with
quotes, since many characters are treated as special by the
shell (e.g., *, #, and parentheses); furthermore, you must
quote expressions that include whitespace (spaces or
TABs). See Table 6-5 for examples.

Table 6-5. Sample integer expression
assignments

402

Assignment Value

let x= $x

1+4 5

`1 + 4' 5

`(2+3) * 5' 25

`2 + 3 * 5' 17

`17 / 3' 5

`17 % 3' 2

`1<<4' 16

`48>>3' 6

403

Assignment Value

`17 & 3' 1

`17 | 3' 19

`17 ^ 3' 18

Task 6-1

Here is a small task that makes use of integer arithmetic.
Write a script called ndu that prints a summary of the
disk space usage for each directory argument (and any
subdirectories), both in terms of bytes, and kilobytes or
megabytes (whichever is appropriate).

Here is the code:

for dir in ${*:-.}; do
if [-e $dir]; then

result=$(du -s $dir | cut -f 1)
let total=$result*1024

echo -n "Total for $dir = $total bytes"

404

if [$total -ge 1048576]; then
echo " ($((total/1048576)) Mb)"

elif [$total -ge 1024]; then
echo " ($((total/1024)) Kb)"

fi
fi

done

To obtain the disk usage of files and directories, we can
use the UNIX utility du. The default output of du is a list
of directories with the amount of space each one uses,
and looks something like this:

6 ./toc
3 ./figlist
6 ./tablist
1 ./exlist
1 ./index/idx
22 ./index
39 .

If you don't specify a directory to du, it will use the
current directory (.). Each directory and subdirectory is
listed along with the amount of space it uses. The grand
total is given in the last line.

The amount of space used by each directory and all the
files in it is listed in terms of blocks. Depending on the
UNIX system you are running on, one block can
represent 512 or 1024 bytes. Each file and directory uses
at least one block. Even if a file or directory is empty, it is
still allocated a block of space in the filesystem.

In our case, we are only interested in the total usage,
given on the last line of du's output. To obtain only this

405

line, we can use the -s option of du. Once we have the
line, we want only the number of blocks and can throw
away the directory name. For this we use our old friend
cut to extract the first field.

Once we have the total, we can multiply it by the number
of bytes in a block (1024 in this case) and print the result
in terms of bytes. We then test to see if the total is greater
than the number of bytes in one megabyte (1048576
bytes, which is 1024 x 1024) and if it is, we can print how
many megabytes it is by dividing the total by this large
number. If not, we see if it can be expressed in kilobytes,
otherwise nothing is printed.

We need to make sure that any specified directories exist,
otherwise du will print an error message and the script
will fail. We do this by using the test for file or directory
existence (-e) that we saw in Chapter 5 before calling du.

To round out this script, it would be nice to imitate du as
closely as possible by providing for multiple arguments.
To do this, we wrap the code in a for loop. Notice how
parameter substitution has been used to specify the
current directory if no arguments are given.

As a bigger example of integer arithmetic, we will
complete our emulation of the pushd and popd functions
(Task 4-8). Remember that these functions operate on
DIR_STACK, a stack of directories represented as a
string with the directory names separated by spaces.

406

bash's pushd and popd take additional types of
arguments, which are:

• pushd +n takes the nth directory in the stack
(starting with 0), rotates it to the top, and cds to
it.

• pushd without arguments, instead of
complaining, swaps the two top directories on the
stack and cds to the new top.

• popd +n takes the nth directory in the stack and
just deletes it.

The most useful of these features is the ability to get at
the nth directory in the stack. Here are the latest versions
of both functions:

.ps 8
pushd ()
{

dirname=$1 if [-n $dirname] && [\(-d $dirname \) -a
\(-x $dirname \)]; then

DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"
cd $dirname
echo "$DIR_STACK"

else
echo "still in $PWD."

fi
}

popd ()
{

if [-n "$DIR_STACK"]; then

407

DIR_STACK=${DIR_STACK#* }

cd ${DIR_STACK%% *}
echo "$PWD"

else
echo "stack empty, still in $PWD."

fi
}

To get at the nth directory, we use a while loop that
transfers the top directory to a temporary copy of the
stack n times. We'll put the loop into a function called
getNdirs that looks like this:

getNdirs ()
{

stackfront=''
let count=0
while [$count -le $1]; do

target=${DIR_STACK%${DIR_STACK#* }}
stackfront="$stackfront$target"
DIR_STACK=${DIR_STACK#$target}
let count=count+1

done

stackfront=${stackfront%$target}
}

The argument passed to getNdirs is the n in question. The
variable target contains the directory currently being
moved from DIR_STACK to a temporary stack,
stackfront. target will contain the nth directory and
stackfront will have all of the directories above (and
including) target when the loop finishes. stackfront
starts as null; count, which counts the number of loop
iterations, starts as 0.

408

The first line of the loop body copies the first directory on
the stack to target. The next line appends target to
stackfront and the following line removes target from
the stack ${DIR_STACK#$target}. The last line
increments the counter for the next iteration. The entire
loop executes n+1 times, for values of count from 0 to N.

When the loop finishes, the directory in $target is the nth
directory. The expression ${stackfront%$target}
removes this directory from stackfront so that
stackfront will contain the first n-1 directories.
Furthermore, DIR_STACK now contains the "back" of
the stack, i.e., the stack without the first n directories.
With this in mind, we can now write the code for the
improved versions of pushd and popd:

pushd ()
{

if [$(echo $1 | grep '^+[0-9][0-9]*$')]; then

case of pushd +n: rotate n-th directory to top
let num=${1#+}
getNdirs $num

DIR_STACK="$target$stackfront$DIR_STACK"
cd $target
echo "$DIR_STACK"

elif [-z "$1"]; then
case of pushd without args; swap top two directories
firstdir=${DIR_STACK%% *}
DIR_STACK=${DIR_STACK#* }
seconddir=${DIR_STACK%% *}

409

DIR_STACK=${DIR_STACK#* }
DIR_STACK="$seconddir $firstdir $DIR_STACK"
cd $seconddir

else
normal case of pushd dirname
dirname=$1
if [\(-d $dirname \) -a \(-x $dirname \)]; then

DIR_STACK="$dirname ${DIR_STACK:-$PWD" "}"
cd $dirname
echo "$DIR_STACK"

else
echo still in "$PWD."

fi
fi

}

popd ()
{

if [$(echo $1 | grep '^+[0-9][0-9]*$')]; then

case of popd +n: delete n-th directory from stack
let num=${1#+}
getNdirs $num
DIR_STACK="$stackfront$DIR_STACK"
cd ${DIR_STACK%% *}
echo "$PWD"

else

normal case of popd without argument
if [-n "$DIR_STACK"]; then

DIR_STACK=${DIR_STACK#* }
cd ${DIR_STACK%% *}
echo "$PWD"

else
echo "stack empty, still in $PWD."

410

fi
fi

}

These functions have grown rather large; let's look at
them in turn. The if at the beginning of pushd checks if
the first argument is an option of the form + N. If so, the
first body of code is run. The first let simply strips the
plus sign (+) from the argument and assigns the
result—as an integer—to the variable num. This, in turn,
is passed to the getNdirs function.

The next assignment statement sets DIR_STACK to the
new ordering of the list. Then the function cds to the new
directory and prints the current directory stack.

The elif clause tests for no argument, in which case pushd
should swap the top two directories on the stack. The first
four lines of this clause assign the top two directories to
firstdir and seconddir, and delete these from the stack.
Then, as above, the code puts the stack back together in
the new order and cds to the new top directory.

The else clause corresponds to the usual case, where the
user supplies a directory name as argument.

popd works similarly. The if clause checks for the + N
option, which in this case means "delete the nth
directory." A let extracts the N as an integer; the getNdirs
function puts the first n directories into stackfront.
Finally, the stack is put back together with the nth

411

directory missing, and a cd is performed in case the
deleted directory was the first in the list.

The else clause covers the usual case, where the user
doesn't supply an argument.

Before we leave this subject, here are a few exercises that
should test your understanding of this code:

1. Implement bash's dirs command and the options
+n and -l. dirs by itself displays the list of
currently remembered directories (those in the
stack). The +n option prints out the nth directory
(starting at 0) and the -l option produces a long
listing; any tildes (~) are replaced by the full
pathname.

2. Modify the getNdirs function so that it checks for
N exceeding the number of directories in the
stack and exits with an appropriate error message
if true.

3. Modify pushd, popd, and getNdirs so that they
use variables of type integer in the arithmetic
expressions.

4. Change getNdirs so that it uses cut (with
command substitution), instead of the while loop,
to extract the first N directories. This uses less
code but runs more slowly because of the extra
processes generated.

412

5. bash's versions of pushd and popd also have a
-N option. In both cases -N causes the nth
directory from the right-hand side of the list to
have the operation performed on it. As with +N,
it starts at 0. Add this functionality.

6. Use getNdirs to reimplement the selectd function
from the last chapter.

413

Arithmetic for Loops

Chapter 5 introduced the for loop and briefly mentioned
another type of for loop, more akin to the construct found
in many programming languages like Java and C. This
type of for loop is called an arithmetic for loop.[14]

The form of an arithmetic for loop is very similar to those
found in Java and C:

for ((initialisation ; ending condition ; update))
do

statements...
done

There are four sections to the loop, the first three being
arithmetic expressions and the last being a set of
statements just as in the standard loop that we saw in the
last chapter.

The first expression, initialisation, is something that is
done once at the start of the loop and if it evaluates to true
the loop continues its process; otherwise, it skips the loop
and continues with the next statement. When
initialisation is true the loop then evaluates ending
condition. If this is true then it executes statements,
evaluates update and repeats the cycle again by
evaluation ending condition. The loop continues until

414

ending condition becomes false or the loop is exited via
one of the statements.

Usually initialisation is used to set an arithmetic variable
to some initial value, update updates that variable, and
ending condition tests the variable. Any of the values may
be left out in which case they automatically evaluate to
true. The following simple example:

for ((;;))
do

read var
if ["$var" = "."]; then

break
fi

done

loops forever reading lines until a line consisting of a . is
found. We'll look at using the expressions in an arithmetic
for loop in our next task.

Task 6-2

Write a script that uses for loops to print out a
multiplication table for the numbers 1 to 12.

This task is best accomplished using nested for loops:

for ((i=1; i <= 12 ; i++))
do

for ((j=1 ; j <= 12 ; j++))

415

do
echo -ne "$((j * i))\t"

done
echo

done

The script begins with a for loop using a variable i; the
initialisation clause sets i to 1, the ending condition
clause tests i against the limit (12 in our case), and the
update clause adds 1 to i each time around the loop. The
body of the loop is another for loop, this time with a
variable called j. This is identical to the i for loop except
that j is being updated.

The body of the j loop has an echo statement where the
two variables are multiplied together and printed along
with a trailing tab. We deliberately don't print a newline
(with the -n option to echo) so that the numbers appear on
one line. Once the inner loop has finished a newline is
printed so that the set of numbers starts on the next line.

Arithmetic for loops are useful when dealing with arrays,
which we'll now look at.

[8] You can also use the older form $[...], but we don't
recommend this because it will be phased out in future
versions of bash.

[9] The assignment forms of these operators are also
permitted. For example, $((x += 2)) adds 2 to x and stores
the result back in x.

416

[11] ++ and - are not available in versions of bash prior to
2.04.

[12] Note that the truth values returned by $((...)) are 1 for
true, 0 for false—the reverse of the test and exit statuses.

[13] ((...)) is not available in versions of bash prior to 2.0.

[14] Versions of bash prior to 2.04 do not have this type of
loop.

417

Arrays
The pushd and popd functions use a string variable to
hold a list of directories and manipulate the list with the
string pattern-matching operators. Although this is quite
efficient for adding or retrieving items at the beginning or
end of the string, it becomes cumbersome when
attempting to access items that are anywhere else, e.g.,
obtaining item N with the getNdirs function. It would be
nice to be able to specify the number, or index, of the
item and retrieve it. Arrays allow us to do this.[15]

An array is like a series of slots that hold values. Each
slot is known as an element, and each element can be
accessed via a numerical index. An array element can
contain a string or a number, and you can use it just like
any other variable. The indices for arrays start at 0 and
continue up to a very large number.[16] So, for example,
the fifth element of array names would be names[4].
Indices can be any valid arithmetic expression that
evaluates to a number greater than or equal to 0.

There are several ways to assign values to arrays. The
most straightforward way is with an assignment, just like
any other variable:

names[2]=alice
names[0]=hatter
names[1]=duchess

418

This assigns hatter to element 0, duchess to element 1,
and alice to element 2 of the array names.

Another way to assign values is with a compound
assignment:

names=([2]=alice [0]=hatter [1]=duchess)

This is equivalent to the first example and is convenient
for initializing an array with a set of values. Notice that
we didn't have to specify the indices in numerical order.
In fact, we don't even have to supply the indices if we
reorder our values slightly:

names=(hatter duchess alice)

bash automatically assigns the values to consecutive
elements starting at 0. If we provide an index at some
point in the compound assignment, the values get
assigned consecutively from that point on, so:

names=(hatter [5]=duchess alice)

assigns hatter to element 0, duchess to element 5, and
alice to element 6.

An array is created automatically by any assignment of
these forms. To explicitly create an empty array, you can
use the -a option to declare. Any attributes that you set
for the array with declare (e.g., the read-only attribute)
apply to the entire array. For example, the statement
declare -ar names would create a read-only array called
names. Every element of the array would be read-only.

419

An element in an array may be referenced with the syntax
${ array[i]}. So, from our last example above, the
statement echo ${names[5]} would print the string
"duchess". If no index is supplied, array element 0 is
assumed.

You can also use the special indices @ and *. These
return all of the values in the array and work in the same
way as for the positional parameters; when the array
reference is within double quotes, using * expands the
reference to one word consisting of all the values in the
array separated by the first character of the IFS variable,
while @ expands the values in the array to separate
words. When unquoted, both of them expand the values
of the array to separate words. Just as with positional
parameters, this is useful for iterating through the values
with a for loop:

for i in "${names[@]}"; do
echo $i

done

Any array elements which are unassigned don't exist; they
default to null strings if you explicitly reference them.
Therefore, the previous looping example will print out
only the assigned elements in the array names. If there
were three values at indexes 1, 45, and 1005, only those
three values would be printed.

If you want to know what indices currently have values in
an array then you can use ${!array[@]}. In the last
example this would return 1 45 1005.[17]

420

A useful operator that you can use with arrays is #, the
length operator that we saw in Chapter 4. To find out the
length of any element in the array, you can use
${#array[i]}. Similarly, to find out how many values
there are in the array, use * or @ as the index. So, for
names=(hatter [5]=duchess alice), ${#names[5]} has
the value 7, and ${#names[@]} has the value 3.

Reassigning to an existing array with a compound array
statement replaces the old array with the new one. All of
the old values are lost, even if they were at different
indices to the new elements. For example, if we
reassigned names to be ([100]=tweedledee
tweedledum), the values hatter, duchess, and alice
would disappear.

You can destroy any element or the entire array by using
the unset built-in. If you specify an index, that particular
element will be unset. unset names[100], for instance,
would remove the value at index 100; tweedledee in the
example above. However, unlike assignment, if you don't
specify an index the entire array is unset, not just element
0. You can explicitly specify unsetting the entire array by
using * or @ as the index.

Let's now look at a simple example that uses arrays to
match user IDs to account names on the system. The code
takes a user ID as an argument and prints the name of the
account plus the number of accounts currently on the
system:

421

for i in $(cut -f 1,3 -d: /etc/passwd) ; do
array[${i#*:}]=${i%:*}

done

echo "User ID $1 is ${array[$1]}."
echo "There are currently ${#array[@]} user accounts on the system."

We use cut to create a list from fields 1 and 3 in the /etc/
passwd file. Field 1 is the account name and field 3 is the
user ID for the account. The script loops through this list
using the user ID as an index for each array element and
assigns each account name to that element. The script
then uses the supplied argument as an index into the
array, prints out the value at that index, and prints the
number of existing array values.

We'll now look at combining our knowledge of arrays
with arithmetic for loops in the next task:

Task 6-3

Write a selection sort script that takes numbers in an
array and sorts them.

Selection sort is a common algorithm for quickly sorting
a set of elements. While it isn't the quickest sorting
algorithm available, it is easy to understand and
implement.

422

It works by selecting the smallest element in the set and
moving it to the head of the set. It then repeats the
process for the remainder of the set until the end of the set
is reached.

For example, to sort the set 21543 it would start at 2 and
then move down the set. 1 is less than 2 (and the other
elements) so 1 is moved to the start: 12543. Then looking
at 2 and moving down the list it finds nothing less than 2
so it moves to the next element, 5. Moving down the list 4
is less than 5, but 3 is less than 4, so 3 is moved: 12354.
The next element is 5, and 4 is less than this so 4 is
moved: 12345. Five is the last element so the sort is
finished.

The code for this is as follows:

values=(39 5 36 12 9 3 2 30 4 18 22 1 28 25)
numvalues=${#values[@]}
for ((i=0; i < numvalues; i++)); do

lowest=$i
for ((j=i; j < numvalues; j++)); do

if [${values[j]} -le ${values[$lowest]}; then
lowest=$j

fi
done
temp=${values[i]}
values[i]=${values[lowest]}
values[lowest]=$temp

done
for ((i=0; i < numvalues; i++)); do

echo -ne "${values[$i]}\t"
done
echo

423

At the start of the script we set up an array of randomly
ordered values and a variable to hold the number of array
elements as a convenience.

The outer i for loop is for looping over the entire array
and pointing to the current "head" (where we put any
value we need to swap). The variable lowest is set to this
index.

The inner j loop is for looping over the remainder of the
array. It compares the remaining elements with the value
at lowest; if a value is less then lowest is set to the index
of that element.

Once the inner loop is finished the values of the "head" (i)
element and lowest are swapped by using a temporary
variable temp.

On completing the outer loop, the script prints out the
sorted array elements.

Note that some of the environment variables in bash are
arrays; DIRSTACK functions as a stack for the pushd
and popd built-ins, BASH_VERSINFO is an array of
version information for the current instance of the shell,
and PIPESTATUS is an array of exit status values for
the last foreground pipe that was executed.

We'll see a further use of arrays when we build a bash
debugger in Chapter 9.

424

To end this chapter, here are some problems relating to
what we've just covered:

1. Improve the account ID script so that it checks
whether the argument is a number. Also, add a
test to print an appropriate message if the user ID
doesn't exist.

2. Make the script print out the username (field 5)
as well. Hint: this isn't as easy as it sounds. A
username can have spaces in it, causing the for
loop to iterate on each part of the name.

3. As mentioned earlier, the built-in versions of
pushd and popd use an array to implement the
stack. Change the pushd, popd, and getNdirs
code that we developed in this chapter so that it
uses arrays.

4. Change the selection sort in the last task into a
bubble sort. A bubble sort works by iterating
over the list comparing pairs of elements and
swapping them if they are in incorrect order. It
then repeats the process from the start of the list
and continues until the list is traversed with no
swaps.

[15] Support for arrays is not available in versions of bash
prior to 2.0.

425

[16] Actually, up to 599147937791. That's almost six
hundred billion, so yes, it's pretty large.

[17] This is not available in versions of bash prior to 3.0.

426

Chapter 7. Input/Output
and Command-Line
Processing
The past few chapters have gone into detail about various
shell programming techniques, mostly focused on the
flow of data and control through shell programs. In this
chapter, we switch the focus to two related topics. The
first is the shell's mechanisms for doing file-oriented
input and output. We present information that expands on
what you already know about the shell's basic I/O
redirectors.

Second, we'll "zoom in" and talk about I/O at the line and
word level. This is a fundamentally different topic, since
it involves moving information between the domains of
files/terminals and shell variables. echo and command
substitution are two ways of doing this that we've seen so
far.

Our discussion of line and word I/O will lead into a more
detailed explanation of how the shell processes command
lines. This information is necessary so that you can
understand exactly how the shell deals with quotation,
and so that you can appreciate the power of an advanced
command called eval, which we will cover at the end of
the chapter.

427

I/O Redirectors
In Chapter 1, you learned about the shell's basic I/O
redirectors: >, <, and |. Although these are enough to get
you through 95% of your UNIX life, you should know
that bash supports many other redirectors. Table 7-1 lists
them, including the three we've already seen. Although
some of the rest are broadly useful, others are mainly for
systems programmers.

Table 7-1. I/O redirectors

Redirector Function

cmd1 |
cmd2

Pipe; take standard output of cmd1 as
standard input to cmd2.

> file Direct standard output to file.

< file Take standard input from file.

>> file Direct standard output to file; append to
file if it already exists.

428

Redirector Function

>| file Force standard output to file even if
noclobber is set.

n>| file Force output to file from file descriptor n
even if noclobber is set.

<> file Use file as both standard input and
standard output.

n<> file Use file as both input and output for file
descriptor n.

<< label Here-document; see text.

n > file Direct file descriptor n to file.

n < file Take file descriptor n from file.

429

Redirector Function

n >> file Direct file descriptor n to file; append to
file if it already exists.

n>& Duplicate standard output to file descriptor
n.

n<& Duplicate standard input from file
descriptor n.

n>&m File descriptor n is made to be a copy of
the output file descriptor.

n<&m File descriptor n is made to be a copy of
the input file descriptor.

&>file Directs standard output and standard error
to file.

<&- Close the standard input.

430

Redirector Function

>&- Close the standard output.

n>&- Close the output from file descriptor n.

n<&- Close the input from file descriptor n.

n>&word

If n is not specified, the standard output
(file descriptor 1) is used. If the digits in
word do not specify a file descriptor open
for output, a redirection error occurs. As a
special case, if n is omitted, and word does
not expand to one or more digits, the
standard output and standard error are
redirected as described previously.

n<&word

If word expands to one or more digits, the
file descriptor denoted by n is made to be
a copy of that file descriptor. If the digits
in word do not specify a file descriptor
open for input, a redirection error occurs.
If word evaluates to -, file descriptor n is

431

Redirector Function

closed. If n is not specified, the standard
input (file descriptor 0) is used.

n>&digit-
Moves the file descriptor digit to file
descriptor n, or the standard output (file
descriptor 1) if n is not specified.

n<&digit-

Moves the file descriptor digit to file
descriptor n, or the standard input (file
descriptor 0) if n is not specified. digit is
closed after being duplicated to n.

Notice that some of the redirectors in Table 7-1 contain a
digit n, and that their descriptions contain the term file
descriptor; we'll cover that in a little while.

The first two new redirectors, >> and >|, are simple
variations on the standard output redirector >. The >>
appends to the output file (instead of overwriting it) if it
already exists; otherwise it acts exactly like >. A common
use of >> is for adding a line to an initialization file (such
as .bashrc or .mailrc) when you don't want to bother with
a text editor. For example:

432

$ cat >> .bashrc
alias cdmnt='mount -t iso9660 /dev/sbpcd /cdrom'
^D

As we saw in Chapter 1, cat without an argument uses
standard input as its input. This allows you to type the
input and end it with CTRL-D on its own line. The alias
line will be appended to the file .bashrc if it already
exists; if it doesn't, the file is created with that one line.

Recall from Chapter 3, that you can prevent the shell
from overwriting a file with > file by typing set -o
noclobber. >| overrides noclobber—it's the "Do it
anyway, dammit!" redirector.

The redirector <> is mainly meant for use with device
files (in the /dev directory), i.e., files that correspond to
hardware devices such as terminals and communication
lines. Low-level systems programmers can use it to test
device drivers; otherwise, it's not very useful.

The rest of the redirectors will only be useful in special
situations and you are unlikely to need them most of the
time.

Here-documents

The << label redirector essentially forces the input to a
command to be the shell's standard input, which is read
until there is a line that contains only label. The input in
between is called a here-document. Here-documents

433

aren't very interesting when used from the command
prompt. In fact, it's the same as the normal use of
standard input except for the label. We could use a
here-document to simulate the mail facility. When you
send a message to someone with the mail utility, you end
the message with a dot (.). The body of the message is
saved in a file, msgfile:

$ cat >> msgfile << .
> this is the text of
> our message.
> .

Here-documents are meant to be used from within shell
scripts; they let you specify "batch" input to programs. A
common use of here-documents is with simple text
editors like ed. Task 7-1 is a programming task that uses a
here-document in this way.

Task 7-1

The s file command in mail saves the current message in
file. If the message came over a network (such as the
Internet), then it has several header lines prepended that
give information about network routing. Write a shell
script that deletes the header lines from the file.

We can use ed to delete the header lines. To do this, we
need to know something about the syntax of mail
messages; specifically, that there is always a blank line

434

between the header lines and the message text. The ed
command 1,/^[]*$/d does the trick: it means, "Delete
from line 1 until the first blank line." We also need the ed
commands w (write the changed file) and q (quit). Here is
the code that solves the task:

ed $1 << EOF
1,/^[]*$/d
w
q
EOF

The shell does parameter (variable) substitution and
command substitution on text in a here-document,
meaning that you can use shell variables and commands
to customize the text. A good example of this is the
bashbug script, which sends a bug report to the bash
maintainer (see Chapter 11). Here is a stripped-down
version:

MACHINE="i586"
OS="linux-gnu"
CC="gcc"
CFLAGS=" -DPROGRAM='bash' -DHOSTTYPE='i586' -DOSTYPE='linux-gnu' \

-DMACHTYPE='i586-pc-linux-gnu' -DSHELL -DHAVE_CONFIG_H -I. \
-I. -I./lib -g -O2"

RELEASE="2.01"
PATCHLEVEL="0"
RELSTATUS="release"
MACHTYPE="i586-pc-linux-gnu"

TEMP=/tmp/bbug.$$

case "$RELSTATUS" in
alpha*|beta*) BUGBASH=chet@po.cwru.edu ;;

435

*) BUGBASH=bug-bash@prep.ai.mit.edu ;;
esac

BUGADDR="${1-$BUGBASH}"

UN=
if (uname) >/dev/null 2>&1; then

UN=`uname -a`
fi

cat > $TEMP <<EOF
From: ${USER}
To: ${BUGADDR}
Subject: [50 character or so descriptive subject here (for reference)]

Configuration Information [Automatically generated, do not change]:
Machine: $MACHINE
OS: $OS
Compiler: $CC
Compilation CFLAGS: $CFLAGS
uname output: $UN
Machine Type: $MACHTYPE

bash Version: $RELEASE
Patch Level: $PATCHLEVEL
Release Status: $RELSTATUS

Description:
[Detailed description of the problem, suggestion, or complaint.]

Repeat-By:
[Describe the sequence of events that causes the problem
to occur.]

Fix:
[Description of how to fix the problem. If you don't know a
fix for the problem, don't include this section.]

436

EOF

vi $TEMP

mail $BUGADDR < $TEMP

The first eight lines are generated when bashbug is
installed. The shell will then substitute the appropriate
values for the variables in the text whenever the script is
run.

The redirector << has two variations. First, you can
prevent the shell from doing parameter and command
substitution by surrounding the label in single or double
quotes. In the above example, if you used the line cat >
$TEMP <<`EOF', then text like $USER and
$MACHINE would remain untouched (defeating the
purpose of this particular script).

The second variation is <<-, which deletes leading TABs
(but not blanks) from the here-document and the label
line. This allows you to indent the here-document's text,
making the shell script more readable:

cat > $TEMP <<-EOF
From: ${USER}
To: ${BUGADDR}
Subject: [50 character or so descriptive subject here]

Configuration Information [Automatically generated,
do not change]:

Machine: $MACHINE
OS: $OS
Compiler: $CC

437

Compilation CFLAGS: $CFLAGS
...

EOF

Make sure you are careful when choosing your label so
that it doesn't appear as an actual input line.

A slight variation on this is provided by the here string. It
takes the form <<<word; the word is expanded and
supplied on the standard input.

438

File Descriptors

The next few redirectors in Table 7-1 depend on the
notion of a file descriptor. Like the device files used with
<>, this is a low-level UNIX I/O concept that is of
interest only to systems programmers—and then only
occasionally. You can get by with a few basic facts about
them; for the whole story, look at the entries for read(),
write(), fcntl(), and others in Section 2 of the UNIX
manual. You might wish to refer to UNIX Power Tools by
Shelley Powers, Jerry Peek, Tim O'Reilly, and Mike
Loukides (O'Reilly).

File descriptors are integers starting at 0 that refer to
particular streams of data associated with a process.
When a process starts, it usually has three file descriptors
open. These correspond to the three standards: standard
input (file descriptor 0), standard output (1), and standard
error (2). If a process opens additional files for input or
output, they are assigned to the next available file
descriptors, starting with 3.

By far the most common use of file descriptors with bash
is in saving standard error in a file. For example, if you
want to save the error messages from a long job in a file
so that they don't scroll off the screen, append 2> file to
your command. If you also want to save standard output,
append > file1 2> file2.

439

This leads to another programming task.

Task 7-2

You want to start a long job in the background (so that
your terminal is freed up) and save both standard output
and standard error in a single log file. Write a script that
does this.

We'll call this script start. The code is very terse:

"$@" > logfile 2>&1 &

This line executes whatever command and parameters
follow start. (The command cannot contain pipes or
output redirectors.) It sends the command's standard
output to logfile.

Then, the redirector 2>&1 says, "send standard error (file
descriptor 2) to the same place as standard output (file
descriptor 1)." Since standard output is redirected to
logfile, standard error will go there too. The final & puts
the job in the background so that you get your shell
prompt back.

As a small variation on this theme, we can send both
standard output and standard error into a pipe instead of a
file: command 2>&1 | ... does this. (Make sure you
understand why.) Here is a script that sends both standard

440

output and standard error to the logfile (as above) and to
the terminal:

"$@" 2>&1 | tee logfile &

The command tee takes its standard input and copies it to
standard output and the file given as argument.

These scripts have one shortcoming: you must remain
logged in until the job completes. Although you can
always type jobs (see Chapter 1) to check on progress,
you can't leave your terminal until the job finishes, unless
you want to risk a breach of security.[1] We'll see how to
solve this problem in the next chapter.

The other file-descriptor-oriented redirectors (e.g., <& n)
are usually used for reading input from (or writing output
to) more than one file at the same time. We'll see an
example later in this chapter. Otherwise, they're mainly
meant for systems programmers, as are <&- (force
standard input to close) and >&- (force standard output to
close).

Before we leave this topic, we should just note that 1> is
the same as >, and 0< is the same as <. If you understand
this, then you probably know all you need to know about
file descriptors.

[1] Don't put it past people to come up to your unattended
terminal and cause mischief!

441

String I/O
Now we'll zoom back in to the string I/O level and
examine the echo and read statements, which give the
shell I/O capabilities that are more analogous to those of
conventional programming languages.

echo

As we've seen countless times in this book, echo simply
prints its arguments to standard output. Now we'll explore
the command in greater detail.

Options to echo

echo accepts a few dash options, listed in Table 7-2.

Table 7-2. echo options

Option Function

-e Turns on the interpretation of
backslash-escaped characters

442

Option Function

-E
Turns off the interpretation of
backslash-escaped characters on systems
where this mode is the default

-n Omits the final newline (same as the \c escape
sequence)

443

echo escape sequences

echo accepts a number of escape sequences that start with
a backslash.[2] They are listed in Table 7-3.

These sequences exhibit fairly predictable behavior,
except for \f: on some displays, it causes a screen clear,
while on others it causes a line feed. It ejects the page on
most printers. \v is somewhat obsolete; it usually causes a
line feed.

Table 7-3. echo escape sequences

Sequence Character printed

\a ALERT or CTRL-G (bell)

\b BACKSPACE or CTRL-H

\c Omit final NEWLINE

\e Escape character (same as \E)

444

Sequence Character printed

\E Escape character[3]

\f FORMFEED or CTRL-L

\n NEWLINE (not at end of command) or
CTRL-J

\r RETURN (ENTER) or CTRL-M

\t TAB or CTRL-I

\v VERTICAL TAB or CTRL-K

\ n ASCII character with octal (base-8) value n,
where n is 1 to 3 digits

\0nnn
The eight-bit character whose value is the
octal (base-8) value nnn where nnn is 1 to 3
digits

445

Sequence Character printed

\xHH
The eight-bit character whose value is the
hexadecimal (base-16) value HH (one or
two digits)

\\ Single backslash

[3] Not available in versions of bash prior to 2.0.

The \n, \0, and \x sequences are even more
device-dependent and can be used for complex I/O, such
as cursor control and special graphics characters.

446

printf

bash 's echo command is quite powerful and for most
cases entirely adequate. However, there are occasions
where a more powerful and flexible approach is needed
for printing information, especially when the information
needs to be formatted. bash provides this by giving access
to a powerful system-level printing library known as
printf.[4]

The printf command can output a string similar to the
echo command:

printf "hello world"

Unlike the echo command, printf does not automatically
provide a newline. If we want to make it do the exactly
same as a standard echo then we must provide one by
adding \n to the end:

printf "hello world\n"

You may ask why this is any better than echo. The printf
command has two parts, which is what makes it so
powerful.

printf format-string [arguments]

The first part is a string that describes the format
specifications; this is best supplied as a string constant in

447

quotes. The second part is an argument list, such as a list
of strings or variable values that correspond to the format
specifications. (The format is reused as necessary to use
up all of the arguments. If the format requires more
arguments than are supplied, the extra format
specifications behave as if a zero value or null string, as
appropriate, had been supplied). A format specification is
preceded by a percent sign (%), and the specifier is one of
the characters described below. Two of the main format
specifiers are %s for strings and %d for decimal integers.

This sounds complicated but we can begin by re-casting
the last example:

printf "%s %s\n" hello world

This prints hello world on a line of its own, just as the
previous example did. The word hello has been assigned
to the first format specification, %s. Likewise, world has
been assigned to the second %s. printf then prints these
two strings followed by the newline.

We could also achieve the same result by making hello an
explicit part of the format string:

$ printf "hello %s\n" world
hello world

The allowed specifiers are shown in Table 7-4.

Table 7-4. printf format specifiers

448

Specifier Description

%c ASCII character (prints first character of
corresponding argument)

%d Decimal integer

%i Same as %d

%e Floating-point format ([-]d.precisione[+-]dd)
(see following text for meaning of precision)

%E Floating-point format
([-]d.precisionE[+-]dd)

%f Floating-point format ([-]ddd.precision)

%g %e or %f conversion, whichever is shorter,
with trailing zeros removed

449

Specifier Description

%G %E or %f conversion, whichever is shortest,
with trailing zeros removed

%o Unsigned octal value

%s String

%u Unsigned decimal value

%x Unsigned hexadecimal number; uses a-f for
10 to 15

%X Unsigned hexadecimal number; uses A-F for
10 to 15

%% Literal %

The printf command can be used to specify the width and
alignment of output fields. A format expression can take

450

three optional modifiers following % and preceding the
format specifier:

%flags width.precision format-specifier

The width of the output field is a numeric value. When
you specify a field width, the contents of the field are
right-justified by default. You must specify a flag of "-"
to get left-justification. (The rest of the flags are
discussed shortly.) Thus, "%-20s" outputs a left-justified
string in a field 20 characters wide. If the string is less
than 20 characters, the field is padded with whitespace to
fill. In the following examples, a | is output to indicate the
actual width of the field. The first example right-justifies
the text:

printf "|%10s|\n" hello

It produces:

| hello|

The next example left-justifies the text:

printf "|%-10s|\n" hello

It produces:

|hello |

The precision modifier, used for decimal or floating-point
values, controls the number of digits that appear in the
result. For string values, it controls the maximum number
of characters from the string that will be printed.

451

You can specify both the width and precision
dynamically, via values in the printf argument list. You
do this by specifying asterisks, instead of literal values.

$ myvar=42.123456
$ printf "|%*.*G|\n" 5 6 $myvar
|42.1235|

In this example, the width is 5, the precision is 6, and the
value to print comes from the value of myvar.

The precision is optional. Its exact meaning varies by
control letter, as shown in Table 7-5.

Table 7-5. Meaning of precision

Conversion Precision means

%d, %I,
%o, %u,
%x, %X

The minimum number of digits to print.
When the value has fewer digits, it is
padded with leading zeros. The default
precision is 1.

%e, %E

The minimum number of digits to print.
When the value has fewer digits, it is
padded with zeros after the decimal point.
The default precision is 10. A precision of
0 inhibits printing of the decimal point.

452

Conversion Precision means

%f The number of digits to the right of the
decimal point.

%g, %G The maximum number of significant
digits.

%s The maximum number of characters to
print.

Finally, one or more flags may precede the field width
and the precision. We've already seen the "-" flag for
left-justification. The rest of the flags are shown in Table
7-6.

Table 7-6. Flags for printf

Character Description

- Left-justify the formatted value within the
field.

453

Character Description

space Prefix positive values with a space and
negative values with a minus.

+ Always prefix numeric values with a sign,
even if the value is positive.

#

Use an alternate form: %o has a preceding
0; %x and %X are prefixed with 0x and
0X, respectively; %e, %E and %f always
have a decimal point in the result; and %g
and %G do not have trailing zeros
removed.

0

Pad output with zeros, not spaces. This
only happens when the field width is wider
than the converted result. In the C
language, this flag applies to all output
formats, even non-numeric ones. For bash,
it only applies to the numeric formats.

If printf cannot perform a format conversion, it returns a
non-zero exit status.

454

Additional bash printf specifiers

Besides the standard specifiers just described, the bash
shell (and other POSIX compliant shells) accepts two
additional specifiers. These provide useful features at the
expense of nonportability to versions of the printf
command found in some other shells and in other places
in UNIX:

%b

When used instead of %s, expands echo-style escape
sequences in the argument string. For example:

$ printf "%s\n" 'hello\nworld'
hello\nworld
$ printf "%b\n" 'hello\nworld'
hello
world

%q

When used instead of %s, prints the string argument
in such a way that it can be used for shell input. For
example:

$ printf "%q\n" "greetings to the world"
greetings\ to\ the\ world

455

read

The other half of the shell's string I/O facilities is the
read command, which allows you to read values into
shell variables. The basic syntax is:

read var1 var2...

This statement takes a line from the standard input and
breaks it down into words delimited by any of the
characters in the value of the environment variable IFS
(see Chapter 4; these are usually a space, a TAB, and
NEWLINE). The words are assigned to variables var1,
var2, etc. For example:

$ read character1 character2alice duchess$ echo $character1alice
$ echo $character2duchess

If there are more words than variables, then excess words
are assigned to the last variable. If you omit the variables
altogether, the entire line of input is assigned to the
variable REPLY.

You may have identified this as the "missing ingredient"
in the shell programming capabilities we have seen thus
far. It resembles input statements in conventional
languages, like its namesake in Pascal. So why did we
wait this long to introduce it?

456

Actually, read is sort of an "escape hatch" from
traditional shell programming philosophy, which dictates
that the most important unit of data to process is a text
file, and that UNIX utilities such as cut, grep, sort, etc.,
should be used as building blocks for writing programs.

read, on the other hand, implies line-by-line processing.
You could use it to write a shell script that does what a
pipeline of utilities would normally do, but such a script
would inevitably look like:

while (read a line) do
process the line
print the processed line

end

This type of script is usually much slower than a pipeline;
furthermore, it has the same form as a program someone
might write in C (or some similar language) that does the
same thing much faster. In other words, if you are going
to write it in this line-by-line way, there is little point in
writing a shell script.

Reading lines from files

Nevertheless, shell scripts with read are useful for certain
kinds of tasks. One is when you are reading data from a
file small enough so that efficiency isn't a concern (say a
few hundred lines or less), and it's really necessary to get
bits of input into shell variables.

457

Consider the case of a UNIX machine that has terminals
that are hardwired to the terminal lines of the machine. It
would be nice if the TERM environment variable was set
to the correct terminal type when a user logged in.

One way to do this would be to have some code that sets
the terminal information when a user logs in. This code
would presumably reside in /etc/profile, the system-wide
initialization file that bash runs before running a user's
.bash_profile. If the terminals on the system change over
time—as surely they must—then the code would have to
be changed. It would be better to store the information in
a file and change just the file instead.

Assume we put the information in a file whose format is
typical of such UNIX "system configuration" files: each
line contains a device name, a TAB, and a TERM value.

We'll call the file /etc/terms, and it would typically look
something like this:

console console
tty01 wy60
tty03 vt100
tty04 vt100
tty07 wy85
tty08 vt100

The values on the left are terminal lines and those on the
right are the terminal types that TERM can be set to. The
terminals connected to this system are a Wyse 60 (wy60),
three VT100s (vt100), and a Wyse 85 (wy85). The

458

machines' master terminal is the console, which has a
TERM value of console.

We can use read to get the data from this file, but first we
need to know how to test for the end-of-file condition.
Simple: read's exit status is 1 (i.e., non-zero) when there
is nothing to read. This leads to a clean while loop:

TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do

if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break

fi
done

The while loop reads each line of the input into the
variables dev and termtype. In each pass through the
loop, the if looks for a match between $dev and the user's
tty ($line, obtained by command substitution from the tty
command). If a match is found, TERM is set, a message
is printed, and the loop exits; otherwise TERM remains
at the default setting of vt100.

We are not quite done, though: this code reads from the
standard input, not from /etc/terms! We need to know
how to redirect input to multiple commands. It turns out
that there are a few ways of doing this.

459

I/O redirection and multiple
commands

One way to solve the problem is with a subshell, as we'll
see in the next chapter. This involves creating a separate
process to do the reading. However, it is usually more
efficient to do it in the same process; bash gives us four
ways of doing this.

The first, which we have seen already, is with a function:

findterm () {
TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do

if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break;

fi
done

}

findterm < /etc/terms

A function acts like a script in that it has its own set of
standard I/O descriptors, which can be redirected in the
line of code that calls the function. In other words, you
can think of this code as if findterm were a script and you
typed findterm < /etc/terms on the command line. The

460

read statement takes input from /etc/terms a line at a
time, and the function runs correctly.

The second way is to simplify this slightly by placing the
redirection at the end of the function:

findterm () {
TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do

if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break;

fi
done

} < /etc/terms

Whenever findterm is called, it takes its input from /etc/
terms.

The third way is by putting the I/O redirector at the end of
the loop, like this:

TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do

if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break;

fi
done < /etc/terms

You can use this technique with any flow-control
construct, including if...fi, case...esac, select...done, and

461

until...done. This makes sense because these are all
compound statements that the shell treats as single
commands for these purposes. This technique works
fine—the read command reads a line at a time—as long
as all of the input is done within the compound statement.

462

Command blocks

But if you want to redirect I/O to or from an arbitrary
group of commands without creating a separate process,
you need to use a construct that we haven't seen yet. If
you surround some code with { and }, the code will
behave like a function that has no name. This is another
type of compound statement. In accordance with the
equivalent concept in the C language, we'll call this a
command block.

What good is a block? In this case, it means that the code
within the curly brackets ({}) will take standard I/O
descriptors just as we described in the last block of code.
This construct is appropriate for the current example
because the code needs to be called only once, and the
entire script is not really large enough to merit breaking
down into functions. Here is how we use a block in the
example:

{
TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do

if [$dev = $line]; then
TERM=$termtype
echo "TERM set to $TERM."
break;

fi
done

} < /etc/terms

463

To help you understand how this works, think of the curly
brackets and the code inside them as if they were one
command, i.e.:

{ TERM=vt100; line=$(tty); while ... } < /etc/terms;

Configuration files for system administration tasks like
this one are actually fairly common; a prominent example
is /etc/hosts, which lists machines that are accessible in a
TCP/IP network. We can make /etc/terms more like these
standard files by allowing comment lines in the file that
start with #, just as in shell scripts. This way /etc/terms
can look like this:

#
System Console is console
console console
#
Cameron's line has a Wyse 60
tty01 wy60
...

We can handle comment lines by modifying the while
loop so that it ignores lines beginning with #. We can
place a grep in the test:

if [-z "$(echo $dev | grep ^#)"] && [$dev = $line]; then
...

As we saw in Chapter 5, the && combines the two
conditions so that both must be true for the entire
condition to be true.

464

As another example of command blocks, consider the
case of creating a standard algebraic notation frontend to
the dc command. dc is a UNIX utility that simulates a
Reverse Polish Notation (RPN) calculator:[5]

{ while read line; do
echo "$(alg2rpn $line)"

done
} | dc

We'll assume that the actual conversion from one notation
to the other is handled by a function called alg2rpn. It
takes a line of standard algebraic notation as an argument
and prints the RPN equivalent on the standard output. The
while loop reads lines and passes them through the
conversion function, until an EOF is typed. Everything is
executed inside the command block and the output is
piped to the dc command for evaluation.

465

Reading user input

The other type of task to which read is suited is
prompting a user for input. Think about it: we have
hardly seen any such scripts so far in this book. In fact,
the only ones were the modified solutions to Task 5-4,
which involved select.

As you've probably figured out, read can be used to get
user input into shell variables.

We can use echo to prompt the user, like this:

echo -n 'terminal? '
read TERM
echo "TERM is $TERM"

Here is what this looks like when it runs:

terminal? wy60TERM is wy60
However, shell convention dictates that prompts should
go to standard error, not standard output. (Recall that
select prompts to standard error.) We could just use file
descriptor 2 with the output redirector we saw earlier in
this chapter:

echo -n 'terminal? ' >&2
read TERM
echo TERM is $TERM

466

We'll now look at a more complex example by showing
how Task 5-5 would be done if select didn't exist.
Compare this with the code in Chapter 5:

echo 'Select a directory:'
done=false

while [$done = false]; do
do=true
num=1
for direc in $DIR_STACK; do

echo $num) $direc
num=$((num+1))

done
echo -n 'directory? '
read REPLY

if [$REPLY -lt $num] && [$REPLY -gt 0]; then
set - $DIR_STACK

#statements that manipulate the stack...

break
else

echo 'invalid selection.'
fi

done

The while loop is necessary so that the code repeats if the
user makes an invalid choice. select includes the ability to
construct multicolumn menus if there are many choices,
and better handling of null user input.

Before leaving read, we should note that it has eight
options: -a, -d, -e, -n, -p, -r, -t, and -s.[6] The first of
these options allows you to read values into an array.

467

Each successive item read in is assigned to the given
array starting at index 0. For example:

$ read -a people
alice duchess dodo
$ echo ${people[2]}
dodo
$

In this case, the array people now contains the items
alice, duchess, and dodo.

A delimiter can be specified with the -d option. This will
read a line up until the first character of the delimiter is
reached. For example:

$ read -s stop aline
alice duches$
$ echo $aline
alice duche
$

The option -e can be used only with scripts run from
interactive shells. It causes readline to be used to gather
the input line, which means that you can use any of the
readline editing features that we looked at in Chapter 2.

The -n option specifies how many characters will be read
by read. For example, if we specify that it should read
only ten characters in then it will return after reading that
many:

$ read -n 10 aline
abcdefghij$

468

$ echo $aline
abcdefghij
$

The -p option followed by a string argument prints the
string before reading input. We could have used this in
the earlier examples of read, where we printed out a
prompt before doing the read. For example, the directory
selection script could have used read -p `directory?'
REPLY.

read lets you input lines that are longer than the width of
your display by providing a backslash (\) as a
continuation character, just as in shell scripts. The -r
option overrides this, in case your script reads from a file
that may contain lines that happen to end in backslashes.
read -r also preserves any other escape sequences the
input might contain. For example, if the file hatter
contains this line:

A line with a\n escape sequence

Then read -r aline will include the backslash in the
variable aline, whereas without the -r, read will "eat" the
backslash. As a result:

$ read -r aline < hatter$ echo -e "$aline"
A line with a
escape sequence

$

However:

469

$ read aline < hatter$ echo -e "$aline"
A line with an escape sequence
$

The -s option forces read to not echo the characters that
are typed to the terminal. This can be useful in cases
where a shell may want to take single keystroke
commands without displaying the typed characters on the
terminal (e.g., moving something around with the arrow
keys). In this case it could be combined with the -n option
to read a single character each time in a loop: read -s -n1
key

The last option, -t, allows a time in seconds to be
specified. read will wait the specified time for input and
then finish. This is useful if you want a script to wait for
input but continue processing if nothing is supplied.

[2] You must use a double backslash if you don't surround
the string that contains them with quotes; otherwise, the
shell itself "steals" a backslash before passing the
arguments to echo.

[4] printf is not available in versions of bash prior to
version 2.02.

[5] If you have ever owned a Hewlett-Packard calculator
you will be familiar with RPN. We'll discuss RPN further
in one of the exercises at the end of this chapter.

470

[6] -a, -d, -e, -n, -p, -t and -s are not available in versions
of bash prior to 2.0.

471

Command-Line
Processing
We've seen how the shell uses read to process input lines:
it deals with single quotes (`'), double quotes (""), and
backslashes (\); it separates lines into words, according to
delimiters in the environment variable IFS; and it assigns
the words to shell variables. We can think of this process
as a subset of the things the shell does when processing
command lines.

We've touched upon command-line processing
throughout this book; now is a good time to make the
whole thing explicit. Each line that the shell reads from
the standard input or a script is called a pipeline; it
contains one or more commands separated by zero or
more pipe characters (|). For each pipeline it reads, the
shell breaks it up into commands, sets up the I/O for the
pipeline, then does the following for each command
(Figure 7-1):

472

473

Figure 7-1. Steps in command-line
processing

1. Splits the command into tokens that are separated
by the fixed set of metacharacters: SPACE, TAB,
NEWLINE, ;, (,), <, >, |, and &. Types of tokens
include words, keywords, I/O redirectors, and
semicolons.

2. Checks the first token of each command to see if
it is a keyword with no quotes or backslashes. If
it's an opening keyword, such as if and other
control-structure openers, function, {, or (, then
the command is actually a compound command.
The shell sets things up internally for the
compound command, reads the next command,
and starts the process again. If the keyword isn't a
compound command opener (e.g., is a
control-structure "middle" like then, else, or do,
an "end" like fi or done, or a logical operator),
the shell signals a syntax error.

3. Checks the first word of each command against
the list of aliases. If a match is found, it
substitutes the alias's definition and goes back to
Step 1; otherwise, it goes on to Step 4. This
scheme allows recursive aliases (see Chapter 3).

474

It also allows aliases for keywords to be defined,
e.g., alias aslongas=while or alias
procedure=function.

4. Performs brace expansion. For example, a{b,c}
becomes ab ac.

5. Substitutes the user's home directory ($HOME)
for tilde if it is at the beginning of a word.
Substitutes user's home directory for ~user.[7]

6. Performs parameter (variable) substitution for
any expression that starts with a dollar sign ($).

7. Does command substitution for any expression of
the form $(string).

8. Evaluates arithmetic expressions of the form
$((string)).

9. Takes the parts of the line that resulted from
parameter, command, and arithmetic substitution
and splits them into words again. This time it
uses the characters in $IFS as delimiters instead
of the set of metacharacters in Step 1.

10. Performs pathname expansion, a.k.a. wildcard
expansion, for any occurrences of *, ?, and [/]
pairs.

11. Uses the first word as a command by looking up
its source according to the rest of the list in

475

Chapter 4, i.e., as a function command, then as a
built-in, then as a file in any of the directories in
$PATH.

12. Runs the command after setting up I/O
redirection and other such things.

That's a lot of steps—and it's not even the whole story!
But before we go on, an example should make this
process clearer. Assume that the following command has
been run:

alias ll="ls -l"

Further assume that a file exists called .hist537 in user
alice's home directory, which is /home/alice, and that
there is a double-dollar-sign variable $$ whose value is
2537 (we'll see what this special variable is in the next
chapter).

Now let's see how the shell processes the following
command:

ll $(type -path cc) ~alice/.*$(($$%1000))

Here is what happens to this line:

1. ll $(type -path cc) ~alice/
.*$(($$%1000)) splits the input into words.

2. ll is not a keyword, so Step 2 does nothing.

476

3. ls -l $(type -path cc) ~alice/
.*$(($$%1000)) substitutes ls -l for its alias
"ll". The shell then repeats Steps 1 through 3;
Step 2 splits the ls -l into two words.

4. ls -l $(type -path cc) ~alice/
.*$(($$%1000)) does nothing.

5. ls -l $(type -path cc) /home/alice/
.*$(($$%1000)) expands ~alice into
/home/alice.

6. ls -l $(type -path cc) /home/alice/
.*$((2537%1000)) substitutes 2537 for $$.

7. ls -l /usr/bin/cc /home/alice/
.*$((2537%1000)) does command
substitution on "type -path cc".

8. ls -l /usr/bin/cc /home/alice/.*537
evaluates the arithmetic expression 2537%1000.

9. ls -l /usr/bin/cc /home/alice/.*537
does nothing.

10. ls -l /usr/bin/cc /home/alice/
.hist537 substitutes the filename for the
wildcard expression .*537.

11. The command ls is found in /usr/bin.

477

12. /usr/bin/ls is run with the option -l and
the two arguments.

Although this list of steps is fairly straightforward, it is
not the whole story. There are still five ways to modify
the process: quoting; using command, builtin, or enable;
and using the advanced command eval.

Quoting

You can think of quoting as a way of getting the shell to
skip some of the 12 steps above. In particular:

• Single quotes (`') bypass everything through Step
10—including aliasing. All characters inside a
pair of single quotes are untouched. You can't
have single quotes inside single quotes—not even
if you precede them with backslashes.[8]

• Double quotes ("") bypass Steps 1 through 4, plus
steps 9 and 10. That is, they ignore pipe
characters, aliases, tilde substitution, wildcard
expansion, and splitting into words via delimiters
(e.g., blanks) inside the double quotes. Single
quotes inside double quotes have no effect. But
double quotes do allow parameter substitution,
command substitution, and arithmetic expression
evaluation. You can include a double quote
inside a double-quoted string by preceding it with
a backslash (\). You must also backslash-escape

478

$, ` (the archaic command substitution delimiter),
and \ itself.

Table 7-7 has simple examples to show how these work;
they assume the statement person=hatter was run and
user alice's home directory is /home/alice.

If you are wondering whether to use single or double
quotes in a particular shell programming situation, it is
safest to use single quotes unless you specifically need
parameter, command, or arithmetic substitution.

Table 7-7. Examples of quoting rules

Expression Value

$person hatter

"$person" hatter

\$person $person

`$person' $person

479

Expression Value

"'$person'" 'hatter'

~alice /home/alice

"~alice" ~alice

`~alice' ~alice

480

command, builtin, and
enable

Before moving on to the last part of the command-line
processing cycle, we'll take a look at the command
lookup order that we touched on in Chapter 4 and how it
can be altered with several shell built-ins.

The default order for command lookup is functions,
followed by built-ins, with scripts and executables last.
There are three built-ins that you can use to override this
order: command, builtin, and enable.

command removes alias and function lookup.[9] Only
built-ins and commands found in the search path are
executed. This is useful if you want to create functions
that have the same name as a shell built-in or a command
in the search path and you need to call the original
command from the function. For instance, we might want
to create a function called cd that replaces the standard cd
command with one that does some fancy things and then
executes the built-in cd:

cd ()
{

#Some fancy things
command cd

}

481

In this case we avoid plunging the function into a
recursive loop by placing command in front of cd. This
ensures that the built-in cd is called and not the function.

command has some options, listed in Table 7-8.

Table 7-8. command options

Option Description

-p Uses a default value for PATH

-v Prints the command or pathname used to
invoke the command

-V A more verbose description than with -v

- Turns off further option checking

The -p option is a default path which guarantees that the
command lookup will find all of the standard UNIX
utilities. In this case, command will ignore the directories
in your PATH.[10]

482

builtin is very similar to command but is more
restrictive. It looks up only built-in commands, ignoring
functions and commands found in PATH. We could have
replaced command with builtin in the cd example above.

The last command enables and disables shell built-ins—it
is called enable. Disabling a built-in allows a shell script
or executable of the same name to be run without giving a
full pathname. Consider the problem many beginning
UNIX shell programmers have when they name a script
test. Much to their surprise, executing test usually results
in nothing, because the shell is executing the built-in test,
rather than the shell script. Disabling the built-in with
enable overcomes this.[11]

Table 7-9 lists the options available with enable.[12]

Some options are for working with dynamically loadable
built-ins. See Appendix C for details on these options,
and how to create and load your own built-in commands.

Table 7-9. enable options

Option Description

-a Displays every built-in and whether it is
enabled or not

483

Option Description

-d Deletes a built-in loaded with -f

-f
filename

Loads a new built-in from the
shared-object filename

-n Disables a built-in or displays a list of
disabled built-ins

-p Displays a list of all of the built-ins

-s Restricts the output to POSIX "special"
built-ins

Of these options, -n is the most useful; it is used to
disable a built-in. enable without an option enables a
built-in. More than one built-in can be given as arguments
to enable, so enable -n pushd popd dirs would disable
the pushd, popd, and dirs built-ins.[13]

You can find out what built-ins are currently enabled and
disabled by using the command on its own, or with the -p

484

option; enable or enable -p will list all enabled built-ins,
and enable -n will list all disabled built-ins. To get a
complete list with their current status, you can use enable
-a.

The -s option restricts the output to POSIX `special'
built-ins. These are :, ., source, break, continue, eval,
exec, exit, export, readonly, return, set, shift, trap, and
unset.

485

eval

We have seen that quoting lets you skip steps in
command-line processing. Then there's the eval
command, which lets you go through the process again.
Performing command-line processing twice may seem
strange, but it's actually very powerful: it lets you write
scripts that create command strings on the fly and then
pass them to the shell for execution. This means that you
can give scripts "intelligence" to modify their own
behavior as they are running.

The eval statement tells the shell to take eval's arguments
and run them through the command-line processing steps
all over again. To help you understand the implications of
eval, we'll start with a trivial example and work our way
up to a situation in which we're constructing and running
commands on the fly.

eval ls passes the string ls to the shell to execute; the shell
prints a list of files in the current directory. Very simple;
there is nothing about the string ls that needs to be sent
through the command-processing steps twice. But
consider this:

listpage="ls | more"
$listpage

486

Instead of producing a paginated file listing, the shell will
treat | and more as arguments to ls, and ls will complain
that no files of those names exist. Why? Because the pipe
character "appears" in Step 6 when the shell evaluates the
variable, after it has actually looked for pipe characters.
The variable's expansion isn't even parsed until Step 9. As
a result, the shell will treat | and more as arguments to ls,
so that ls will try to find files called | and more in the
current directory!

Now consider eval $listpage instead of just $listpage.
When the shell gets to the last step, it will run the
command eval with arguments ls, |, and more. This
causes the shell to go back to Step 1 with a line that
consists of these arguments. It finds | in Step 2 and splits
the line into two commands, ls and more. Each command
is processed in the normal (and in both cases trivial) way.
The result is a paginated list of the files in your current
directory.

Now you may start to see how powerful eval can be. It is
an advanced feature that requires considerable
programming cleverness to be used most effectively. It
even has a bit of the flavor of artificial intelligence, in
that it enables you to write programs that can "write" and
execute other programs.[14] You probably won't use eval
for everyday shell programming, but it's worth taking the
time to understand what it can do.

As a more interesting example, we'll revisit Task 4-1, the
very first task in the book. In it, we constructed a simple

487

pipeline that sorts a file and prints out the first N lines,
where N defaults to 10. The resulting pipeline was:

sort -nr $1 | head -${2:-10}

The first argument specified the file to sort; $2 is the
number of lines to print.

Now suppose we change the task just a bit so that the
default is to print the entire file instead of 10 lines. This
means that we don't want to use head at all in the default
case. We could do this in the following way:

if [-n "$2"]; then
sort -nr $1 | head -$2

else
sort -nr $1

fi

In other words, we decide which pipeline to run
according to whether $2 is null. But here is a more
compact solution:

eval sort -nr \$1 ${2:+"| head -\$2"}

The last expression in this line evaluates to the string |
head -\$2 if $2 exists (is not null); if $2 is null, then the
expression is null too. We backslash-escape dollar signs
(\$) before variable names to prevent unpredictable
results if the variables' values contain special characters
like > or |. The backslash effectively puts off the
variables' evaluation until the eval command itself runs.
So the entire line is either:

488

eval sort -nr \$1 | head -\$2

if $2 is given, or:

eval sort -nr \$1

if $2 is null. Once again, we can't just run this command
without eval because the pipe is "uncovered" after the
shell tries to break the line up into commands. eval
causes the shell to run the correct pipeline when $2 is
given.

Next, we'll revisit Task 7-2 from earlier in this chapter,
the start script that lets you start a command in the
background and save its standard output and standard
error in a logfile. Recall that the one-line solution to this
task had the restriction that the command could not
contain output redirectors or pipes. Although the former
doesn't make sense when you think about it, you certainly
would want the ability to start a pipeline in this way.

eval is the obvious way to solve this problem:

eval "$@" > logfile 2>&1 &

The only restriction that this imposes on the user is that
pipes and other such special characters be quoted
(surrounded by quotes or preceded by backslashes).

Here's a way to apply eval in conjunction with various
other interesting shell programming concepts.

489

Task 7-3

Implement the core of the make utility as a shell script.

make is known primarily as a programmer's tool, but it
seems as though someone finds a new use for it every
day. Without going into too much extraneous detail, make
basically keeps track of multiple files in a particular
project, some of which depend on others (e.g., a
document depends on its word processor input file(s)). It
makes sure that when you change a file, all of the other
files that depend on it are processed.

For example, assume you're using the troff word
processor to write a book. You have files for the book's
chapters called ch1.t, ch2.t, and so on; the troff output for
these files are ch1.out, ch2.out, etc. You run commands
like troff ch N .t > ch N .out to do the processing. While
you're working on the book, you tend to make changes to
several files at a time.

In this situation, you can use make to keep track of which
files need to be reprocessed, so that all you need to do is
type make, and it will figure out what needs to be done.
You don't need to remember to reprocess the files that
have changed.

How does make do this? Simple: it compares the
modification times of the input and output files (called

490

sources and targets in make terminology), and if the input
file is newer, then make reprocesses it.

You tell make which files to check by building a file
called makefile that has constructs like this:

target : source1 source2 ...
commands to make target

This essentially says, "For target to be up to date, it must
be newer than all of the sources. If it's not, run the
commands to bring it up to date." The commands are on
one or more lines that must start with TABs: e.g., to make
ch7.out:

ch7.out : ch7.t
troff ch7.t > ch7.out

Now suppose that we write a shell function called
makecmd that reads and executes a single construct of
this form. Assume that the makefile is read from standard
input. The function would look like the following code.

makecmd ()
{

read target colon sources
for src in $sources; do

if [$src -nt $target]; then
while read cmd && [$(grep \t* $cmd)]; do

echo "$cmd"
eval ${cmd#\t}

done
break

fi

491

done
}

This function reads the line with the target and sources;
the variable colon is just a placeholder for the :. Then it
checks each source to see if it's newer than the target,
using the -nt file attribute test operator that we saw in
Chapter 5. If the source is newer, it reads, prints, and
executes the commands until it finds a line that doesn't
start with a TAB or it reaches end-of-file. (The real make
does more than this; see the exercises at the end of this
chapter.) After running the commands (which are stripped
of the initial TAB), it breaks out of the for loop, so that it
doesn't run the commands more than once.

As a final example of eval, we'll look again at procimage,
the graphics utility that we developed in the last three
chapters. Recall that one of the problems with the script
as it stands is that it performs the process of scaling and
bordering regardless of whether you want them. If no
command-line options are present, a default size, border
width, and border color are used. Rather than invent some
if then logic to get around this, we'll look at how you can
dynamically build a pipeline of commands in the script;
those commands that aren't needed simply disappear
when the time comes to execute them. As an added
bonus, we'll add another capability to our script: image
enhancement.

Looking at the procimage script you'll notice that the
NetPBM commands form a nice pipeline; the output of
one operation becomes the input to the next, until we end

492

up with the final image. If it weren't for having to use a
particular conversion utility, we could reduce the script to
the following pipeline (ignoring options for now):

cat $filename | convertimage | pnmscale | pnmmargin |\
pnmtojpeg > $outfile

Or, better yet:

convertimage $filename | pnmscale | pnmmargin | pnmtojpeg \
> $outfile

As we've already seen, this is equivalent to:

eval convertimage $filename | pnmscale | pnmmargin |\
pnmtojpeg > $outfile

And knowing what we do about how eval operates, we
can transform this into:

eval "convertimage" $filename " | pnmscale" " | pnmmargin" \
" | pnmtojpeg " > $outfile

And thence to:

convert='convertimage'
scale=' | pnmscale'
border=' | pnmmargin'
standardise=' | pnmtojpeg

eval $convert $filename $scale $border $standardise > $outfile

Now consider what happens when we don't want to scale
the image. We do this:

scale=""

493

while getopts ":s:w:c:" opt; do
case $opt in

s) scale=' | pnmscale' ;;

...

eval $convert $filename $scale $border $standardise > $outfile

In this code fragment, scale is set to a default of the
empty string. If -s is not given on the command line, then
the final line evaluates with $scale as the empty string
and the pipeline will "collapse" into:

$convert $filename $border $standardise > $outfile

Using this principle, we can modify the previous version
of the procimage script and produce a pipeline version.
For each input file we need to construct and run a
pipeline based upon the options given on the command
line. Here is the new version:

Set up the defaults
width=1
colour='-color grey'
usage="Usage: $0 [-s N] [-w N] [-c S] imagefile..."
Initialise the pipeline components
standardise=' | pnmtojpeg -quiet'
while getopts ":s:w:c:" opt; do

case $opt in
s) size=$OPTARG

scale=' | pnmscale -quiet -xysize $size $size' ;;
w) width=$OPTARG

border=' | pnmmargin $colour $width' ;;
c) colour="-color $OPTARG"

border=' | pnmmargin $colour $width' ;;
\?) echo $usage

494

exit 1 ;;
esac

done
shift $(($OPTIND - 1))
if [-z "$@"]; then

echo $usage
exit 1

fi
Process the input files
for filename in "$@"; do

case $filename in
*.gif) convert='giftopnm' ;;
*.tga) convert='tgatoppm' ;;
*.xpm) convert='xpmtoppm' ;;
*.pcx) convert='pcxtoppm' ;;
*.tif) convert='tifftopnm' ;;
*.jpg) convert='jpegtopnm -quiet' ;;

*) echo "$0: Unknown filetype '${filename##*.}'"
exit 1;;

esac
outfile=${filename%.*}.new.jpg
eval $convert $filename $scale $border $standardise > $outfile

done

This version has been simplified somewhat from the
previous one in that it no longer needs a temporary file to
hold the converted file. It is also a lot easier to read and
understand. To show how easy it is to add further
processing to the script, we'll now add one more NetPBM
utility.

NetPBM provides a utility to enhance an image and make
it sharper: pnmnlfilt. This utility is an image filter that
samples the image and can enhance edges in the image (it
can also smooth the image if given the appropriate

495

values). It takes two parameters that tell it how much to
enhance the image. For the purposes of our script, we'll
just choose some optimal values and provide an option to
switch enhancement on and off in the script.

To put the new capability in place all we have to do is
add the new option (-S) to the getopts case statement,
update the usage line, and add a new variable to the
pipeline. Here is the new code:

Set up the defaults
width=1
colour='-color grey'
usage="Usage: $0 [-S] [-s N] [-w N] [-c S] imagefile..."
Initialise the pipeline components
standardise=' | pnmtojpeg -quiet'
while getopts ":Ss:w:c:" opt; do

case $opt in
S) sharpness=' | pnmnlfilt -0.7 0.45' ;;
s) size=$OPTARG

scale=' | pnmscale -quiet -xysize $size $size' ;;
w) width=$OPTARG

border=' | pnmmargin $colour $width' ;;
c) colour="-color $OPTARG"

border=' | pnmmargin $colour $width' ;;
\?) echo $usage

exit 1 ;;
esac

done
shift $(($OPTIND - 1))
if [-z "$@"]; then

echo $usage
exit 1

fi
Process the input files
for filename in "$@"; do

496

case $filename in
*.gif) convert='giftopnm' ;;
*.tga) convert='tgatoppm' ;;
*.xpm) convert='xpmtoppm' ;;
*.pcx) convert='pcxtoppm' ;;
*.tif) convert='tifftopnm' ;;
*.jpg) convert='jpegtopnm -quiet' ;;

*) echo "$0: Unknown filetype '${filename##*.}'"
exit 1;;

esac
outfile=${filename%.*}.new.jpg
eval $convert $filename $scale $border $sharpness $standardise > $outfile

done

We could go on forever with increasingly complex
examples of eval, but we'll settle for concluding the
chapter with a few exercises. The questions in Exercise 3
are really more like items on the menu of food for
thought.

1. Here are a couple of ways to enhance procimage,
the graphics utility:

1. Add an option, -q, that allows the user to
turn on and off the printing of diagnostic
information from the NetPBM utilities.
You'll need to map -q to the -quiet
option of the utilities. Also, add your
own diagnostic output for those utilities
that don't print anything, e.g., the format
conversions.

2. Add an option that allows the user to
specify the order that the NetPBM

497

processes take place, i.e., whether
enhancing the image comes before
bordering, or bordering comes before
resizing. Rather than using an if
construct to make the choice amongst
hard-coded orders, construct a string
dynamically which will look similar to
this:

"eval $convert $filename $scale $border $sharpness
$standardise > $outfile"

3. You'll then need eval to evaluate this
string.

2. The function makecmd in the solution to Task 7-3
represents an oversimplification of the real
make's functionality. make actually checks file
dependencies recursively, meaning that a source
on one line in a makefile can be a target on
another line. For example, the book chapters in
the example could themselves depend on some
figures in separate files that were made with a
graphics package.

1. Write a function called readtargets that
goes through the makefile and stores all
of the targets in a variable or temporary
file.

2. makecmd merely checks to see if any of
the sources are newer than the given

498

target. It should really be a recursive
routine that looks like this:

function makecmd ()
{

target=$1
get sources for $target
for each source src; do

if $src is also a target in this makefile then
makecmd $src

fi
if [$src -nt $target]; then

run commands to make target
return

fi
done

}

3. Implement this.

4. Write the "driver" script that turns the
makecmd function into a full make
program. This should make the target
given as argument, or if none is given,
the first target listed in the makefile.

5. The above makecmd still doesn't do one
important thing that the real make does:
allow for "symbolic" targets that aren't
files. These give make much of the
power that makes it applicable to such an
incredible variety of situations. Symbolic
targets always have a modification time
of 0, so that make always runs the

499

commands to make them. Modify
makecmd so that it allows for symbolic
targets. (Hint: the crux of this problem is
to figure out how to get a file's
modification time. This is quite
difficult.)

3. Here are some problems that really test your
knowledge of eval and the shell's command-line
processing rules. Solve these and you're a true
bash hacker!

1. Advanced shell programmers sometimes
use a little trick that includes eval: using
the value of a variable as the name of
another variable. In other words, you can
give a shell script control over the names
of variables to which it assigns values.
The latest version of bash has this built
in in the form of ${! varname}, where
varname contains the name of another
variable that will be the target of the
operation. This is known as indirect
expansion. How would you do this only
using eval? (Hint: if $object equals
"person", and $person is "alice", then
you might think that you could type echo
$$object and get the response alice. This
doesn't actually work, but it's on the right
track.)

500

2. You could use the above technique
together with other eval tricks to
implement new control structures for the
shell. For example, see if you can write a
script that emulates the behavior of a for
loop in a conventional language like C or
Pascal, i.e., a loop that iterates a fixed
number of times, with a loop variable
that steps from 1 to the number of
iterations (or, for C fans, 0 to
iterations-1). Call your script loop to
avoid clashes with the keywords for and
do.

3. The pushd, popd, and dirs functions
that we built up in previous chapters
can't handle directories with spaces in
their names (because DIR_STACK uses
a space as a delimiter). Use eval to
overcome this limitation. (Hint: use eval
to implement an array. Each array
element is called array1, array2, ...
arrayn, and each array element contains a
directory name.)

4. (The following doesn't have that much to
do with the material in this chapter per
se, but it is a classic programming
exercise:) Write the function alg2rpn
used in the section on command blocks.
Here's how to do this: Arithmetic

501

expressions in algebraic notation have
the form expr op expr, where each expr
is either a number or another expression
(perhaps in parentheses), and op is +, -,
x, /, or % (remainder). In RPN,
expressions have the form expr expr op.
For example: the algebraic expression
2+3 is 2 3 + in RPN; the RPN equivalent
of (2+3) x (9-5) is 2 3 + 9 5 - x. The
main advantage of RPN is that it
obviates the need for parentheses and
operator precedence rules (e.g., x is
evaluated before +). The dc program
accepts standard RPN, but each
expression should have "p" appended to
it, which tells dc to print its result; e.g.,
the first example above should be given
to dc as 2 3 + p.

5. You need to write a routine that converts
algebraic notation to RPN. This should
be (or include) a function that calls itself
(a recursive function) whenever it
encounters a subexpression. It is
especially important that this function
keep track of where it is in the input
string and how much of the string it "eats
up" during its processing. (Hint: make
use of the pattern-matching operators
discussed in Chapter 4 to ease the task of
parsing input strings.) To make your life

502

easier, don't worry about operator
precedence for now; just convert to RPN
from left to right: e.g., treat 3+4x5 as
(3+4)x5 and 3x4+5 as (3x4)+5. This
makes it possible for you to convert the
input string on the fly, i.e., without
having to read in the whole thing before
doing any processing.

6. Enhance your solution to the previous
exercise so that it supports operator
precedence in the "usual" order: x, /, %
(remainder) +, -. For example, treat
3+4x5 as 3+(4x5) and 3x4+5 as (3x4)+5.

7. Here is something else to really test your
skills; write a graphics utility script,
index, that takes a list of image files,
reduces them in size and creates an
"index" image. An index image is
comprised of thumbnail-sized versions of
the original images, placed neatly in
columns and rows, and with a caption
underneath (usually the name of the
original file). Besides the list of files,
you'll need some options, including the
number of columns to create and the size
of the thumbnail images. You might also
like to include an option to specify the
gap between each image. The new
NetPBM utilities you'll need are pbmtext

503

and pnmcat. You'll also need pnmscale
and one or more of the conversion
utilities, depending upon whether you
decide to take in various formats (as we
did for procimage) and what output
format you decide on. pbmtext takes as
an argument some text and converts the
text into a PNM bitmap. pnmcat is a little
more complex. Like cat, it concatenates
things; in this case, images. You can
specify as many PNM files as you like as
arguments and pnmcat will put them
together into one long image. By using
the -lr and -tb options, you can specify
whether you want the images to be
placed one after the other going from left
to right, or from top to bottom. The first
option to pnmcat is the background
color. It can be either -black for a black
background, or -white for a white
background. We suggest -white to match
the pbmtext black text on a white
background. You'll need to take each
file, run the filename through pbmtext,
and use pnmcat to place it underneath a
scaled down version of the original
image. Then you'll need to continue
doing this for each file and use pnmcat to
connect them together. In addition, you'll
have to keep tabs on how many columns
you have completed and when to start a

504

new row. Note that you'll need to build
up the rows individually and use pnmcat
to connect them together. pnmcat won't
do this for you automatically.

[7] Two obscure variations on this: the shell substitutes
the current directory ($PWD) for ~+ and the previous
directory ($OLDPWD) for ~-. In bash 2.0 there are two
more: ~N+ and ~N-. These are replaced by the
corresponding element in the directory stack as given by
the dirs command.

[8] However, as we saw in Chapter 1, `\'' (i.e., single
quote, backslash, single quote, single quote) acts pretty
much like a single quote in the middle of a single-quoted
string; e.g., `abc`\'`def' evaluates to abc`def.

[9] command removes alias lookup as a side effect.
Because the first argument of command is no longer the
first word that bash parses, it is not subjected to alias
lookup.

[10] Unless bash has been compiled with a brain-dead
value for the default. See Chapter 11 for how to change
the default value.

[11] Note that the wrong test may still be run. If your
current directory is the last in PATH you'll probably
execute the system file test. test is not a good name for a
program.

505

[12] The -d, -f, -p, and -s options are not available in
versions of bash prior to 2.0.

[13] Be careful—it is possible to disable enable (enable
-n enable). There is a compile-time option that allows
builtin to act as an escape-hatch. For more details, see
Chapter 11.

[14] You could actually do this without eval, by echoing
commands to a temporary file and then "sourcing" that
file with . filename. But that is much less efficient.

506

Chapter 8. Process
Handling
The UNIX operating system built its reputation on a
small number of concepts, all of which are simple yet
powerful. We've seen most of them by now: standard
input/output, pipes, text-filtering utilities, the
tree-structured file system, and so on. UNIX also gained
notoriety as the first small-computer operating system to
give each user control over more than one process. We
call this capability user-controlled multitasking.

You may not think that multitasking is a big deal. You're
probably used to the idea of running a process in the
background by putting an ampersand (&) at the end of the
command line. You have also seen the idea of a subshell
in Chapter 4, when we showed how shell scripts run.

In this chapter, we will cover most of bash's features that
relate to multitasking and process handling in general.
We say "most" because some of these features are, like
the file descriptors we saw in the previous chapter, of
interest only to low-level systems programmers.

We'll start out by looking at certain important primitives
for identifying processes and for controlling them during
login sessions and within shell scripts. Then we will
move out to a higher-level perspective, looking at ways to

507

get processes to communicate with each other. We'll look
in more detail at concepts we've already seen, like pipes
and subshells.

Don't worry about getting bogged down in low-level
technical details about UNIX. We will provide only the
technical information that is necessary to explain
higher-level features, plus a few other tidbits designed to
pique your curiosity. If you are interested in finding out
more about these areas, refer to your UNIX Programmer's
Manual or a book on UNIX internals that pertains to your
version of UNIX. You might also find UNIX Power Tools
of value.

We strongly recommend that you try out the examples in
this chapter. The behavior of code that involves multiple
processes is not as easy to understand on paper as most of
the other examples in this book.

Process IDs and Job
Numbers
UNIX gives all processes numbers, called process IDs,
when they are created. You will notice that when you run
a command in the background by appending & to it, the
shell responds with a line that looks like this:

$ alice &[1] 93

508

In this example, 93 is the process ID for the alice process.
The [1] is a job number assigned by the shell (not the
operating system). What's the difference? Job numbers
refer to background processes that are currently running
under your shell, while process IDs refer to all processes
currently running on the entire system, for all users. The
term job basically refers to a command line that was
invoked from your shell.

If you start up additional background jobs while the first
one is still running, the shell will number them 2, 3, etc.
For example:

$ duchess &[2] 102
$ hatter &[3] 104

Clearly, 1, 2, and 3 are easier to remember than 93, 102,
and 104!

The shell includes job numbers in messages it prints
when a background job completes:[1]

[1]+ Done alice

We'll explain what the plus sign means soon. If the job
exits with non-zero status (see Chapter 5), the shell will
indicate the exit status:[2]

[1]+ Exit 1 alice

The shell prints other types of messages when certain
abnormal things happen to background jobs; we'll see
these later in this chapter.

509

[1] The messages are, by default, printed before the next
prompt is displayed so as not to interrupt any output on
the display. You can make the notification messages
display immediately by using set -b.

[2] In POSIX mode, the message is slightly different:
"[1]+ Done(1) alice". The number in parentheses is the
exit status of the job. POSIX mode can be selected via the
set command or by starting bash in POSIX mode. For
further information, see Table 2-1 and Table 2-5

510

Job Control
Why should you care about process IDs or job numbers?
Actually, you could probably get along fine through your
UNIX life without ever referring to process IDs (unless
you use a windowing workstation—as we'll see soon).
Job numbers are more important, however: you can use
them with the shell commands for job control.[3]

You already know the most obvious way of controlling a
job: create one in the background with &. Once a job is
running in the background, you can let it run to
completion, bring it into the foreground, or send it a
message called a signal.

Foreground and
Background

The built-in command fg brings a background job into the
foreground. Normally this means that the job will have
control of your terminal or window and therefore will be
able to accept your input. In other words, the job will
begin to act as if you typed its command without the &.

If you have only one background job running, you can
use fg without arguments, and the shell will bring that job

511

into the foreground. But if you have several jobs running
in the background, the shell will pick the one that you put
into the background most recently. If you want some
other job put into the foreground, you need to use the
job's command name, preceded by a percent sign (%), or
you can use its job number, also preceded by %, or its
process ID without a percent sign. If you don't remember
which jobs are running, you can use the command jobs to
list them.

A few examples should make this clearer. Let's say you
created three background jobs as above. Then if you type
jobs, you will see this:

[1] Running alice &
[2]- Running duchess &
[3]+ Running hatter &

jobs has a few interesting options. jobs -l also lists
process IDs:

[1] 93 Running alice &
[2]- 102 Running duchess &
[3]+ 104 Running hatter &

The -p option tells jobs to list only process IDs:

93
102
104

(This could be useful with command substitution; see
Task 8-1.) The -n option lists only those jobs whose
status has changed since the shell last reported

512

it—whether with a jobs command or otherwise. -r
restricts the list to jobs that are running, while -s restricts
the list to those jobs which are stopped, e.g., waiting for
input from the keyboard.[4] Finally, you can use the -x
option to execute a command. Any job number provided
to the command will be substituted with the process ID of
the job. For example, if alice is running in the
background, then executing jobs -x echo %1 will print
the process ID of alice.

If you type fg without an argument, the shell will put
hatter in the foreground, because it was put in the
background most recently. But if you type fg %duchess
(or fg %2), duchess will go in the foreground.

You can also refer to the job most recently put in the
background by %+. Similarly, %- refers to the
next-most-recently backgrounded job (duchess in this
case). That explains the plus and minus signs in the
above: the plus sign shows the most recent job whose
status has changed; the minus sign shows the
next-most-recently invoked job.[5]

If more than one background job has the same command,
then % command will distinguish between them by
choosing the most recently invoked job (as you'd expect).
If this isn't what you want, you need to use the job
number instead of the command name. However, if the
commands have different arguments, you can use %?
string instead of % command. %? string refers to the job

513

whose command contains the string. For example,
assume you started these background jobs:

$ hatter mad &[1] 189
$ hatter teatime &[2] 190
$

Then you can use %?mad and %?teatime to refer to
each of them, although actually %?ma and %?tea are
sufficient to uniquely identify them.

Table 8-1 lists all of the ways to refer to background jobs.
Given how infrequently people use job control
commands, job numbers or command names are
sufficient, and the other ways are superfluous.

Table 8-1. Ways to refer to background jobs

Reference Background job

%N Job number N

%string Job whose command begins with string

%?string Job whose command contains string

514

Reference Background job

%+ Most recently invoked background job

%% Same as above

%- Second most recently invoked background
job

515

Suspending a Job

Just as you can put background jobs into the foreground
with fg, you can also put a foreground job into the
background. This involves suspending a job, so that the
shell regains control of your terminal.

To suspend a job, type CTRL-Z while it is running.[6]

This is analogous to typing CTRL-C (or whatever your
interrupt key is), except that you can resume the job after
you have stopped it. When you type CTRL-Z, the shell
responds with a message like this:

[1]+ Stopped command

Then it gives you your prompt back. To resume a
suspended job so that it continues to run in the
foreground, just type fg. If, for some reason, you put
other jobs in the background after you typed CTRL-Z,
use fg with a job name or number.

For example:

alice is running...CTRL-Z[1]+ Stopped alice
$ hatter &[2] 145
$ fg %alicealice resumes in the foreground...

The ability to suspend jobs and resume them in the
foreground comes in very handy when you have a
conventional terminal (as opposed to a windowing

516

workstation) and you are using a text editor like vi on a
file that needs to be processed. For example, if you are
editing a file for the troff text processor, you can do the
following:

$ vi myfileedit the file... CTRL-ZStopped [1] vi
$ troff myfiletroff reports an error$ fgvi comes back up in the same place in your file

Programmers often use the same technique when
debugging source code.

You will probably also find it useful to suspend a job and
resume it in the background instead of the foreground.
You may start a command in the foreground (i.e.,
normally) and find that it takes much longer than you
expected—for example, a grep, sort, or database query.
You need the command to finish, but you would also like
control of your terminal back so that you can do other
work. If you type CTRL-Z followed by bg, you will
move the job to the background.[7]

You can also suspend a job with CTRL-Y. This is slightly
different from CTRL-Z in that the process is only stopped
when it attempts to read input from the terminal.

[3] If you have an older version of UNIX, it is possible
that your system does not support job control. This is
particularly true for many systems derived from Xenix,
System III, or early versions of System V. On such
systems, bash does not have the fg and bg commands, job

517

number arguments to kill and wait, typing CTRL-Z to
suspend a job, or the TSTP signal.

[4] Options -r and -s are not available in bash prior to
version 2.0.

[5] This is analogous to ~+ and ~- as references to the
current and previous directory; see the footnote in
Chapter 7. Also: %% is a synonym for %+.

[6] This assumes that the CTRL-Z key is set up as your
suspend key; just as with CTRL-C and interrupts, this is
conventional but by no means required.

[7] Be warned, however, that not all commands are
"well-behaved" when you do this. Be especially careful
with commands that run over a network on a remote
machine; you may end up confusing the remote program.

518

Signals
We mentioned earlier that typing CTRL-Z to suspend a
job is similar to typing CTRL-C to stop a job, except that
you can resume the job later. They are actually similar in
a deeper way: both are particular cases of the act of
sending a signal to a process.

A signal is a message that one process sends to another
when some abnormal event takes place or when it wants
the other process to do something. Most of the time, a
process sends a signal to a subprocess it created. You're
undoubtedly already comfortable with the idea that one
process can communicate with another through an I/O
pipeline; think of a signal as another way for processes to
communicate with each other. (In fact, any textbook on
operating systems will tell you that both are examples of
the general concept of interprocess communication, or
IPC.[8])

Depending on the version of UNIX, there are two or three
dozen types of signals, including a few that can be used
for whatever purpose a programmer wishes. Signals have
numbers (from 1 to the number of signals the system
supports) and names; we'll use the latter. You can get a
list of all the signals on your system, by name and
number, by typing kill -l. Bear in mind, when you write
shell code involving signals, that signal names are more
portable to other versions of UNIX than signal numbers.

519

Control-Key Signals

When you type CTRL-C, you tell the shell to send the
INT (for "interrupt") signal to the current job; CTRL-Z
sends TSTP (on most systems, for "terminal stop"). You
can also send the current job a QUIT signal by typing
CTRL-\ (control-backslash); this is sort of like a
"stronger" version of CTRL-C.[9] You would normally
use CTRL-\ when (and only when) CTRL-C doesn't
work.

As we'll see soon, there is also a "panic" signal called
KILL that you can send to a process when even CTRL-\
doesn't work. But it isn't attached to any control key,
which means that you can't use it to stop the currently
running process. INT, TSTP, and QUIT are the only
signals you can use with control keys.[10]

You can customize the control keys used to send signals
with options of the stty command. These vary from
system to system—consult your manpage for the
command—but the usual syntax is stty signame char.
signame is a name for the signal that, unfortunately, is
often not the same as the names we use here. Table 1-7 in
Chapter 1 lists stty names for signals found on all
versions of UNIX. char is the control character, which
you can give using the convention that ^(circumflex)
represents "control." For example, to set your INT key to
CTRL-X on most systems, use:

520

stty intr ^X

Now that we've told you how to do this, we should add
that we don't recommend it. Changing your signal keys
could lead to trouble if someone else has to stop a
runaway process on your machine.

Most of the other signals are used by the operating system
to advise processes of error conditions, like a bad
machine code instruction, bad memory address, or
division by zero, or "interesting" events such as a timer
("alarm") going off. The remaining signals are used for
esoteric error conditions of interest only to low-level
systems programmers; newer versions of UNIX have
even more signal types.

521

kill

You can use the built-in shell command kill to send a
signal to any process you created—not just the currently
running job. kill takes as an argument the process ID, job
number, or command name of the process to which you
want to send the signal. By default, kill sends the TERM
("terminate") signal, which usually has the same effect as
the INT signal you send with CTRL-C. But you can
specify a different signal by using the signal name (or
number) as an option, preceded by a dash.

kill is so named because of the nature of the default
TERM signal, but there is another reason, which has to do
with the way UNIX handles signals in general. The full
details are too complex to go into here, but the following
explanation should suffice.

Most signals cause a process that receives them to die;
therefore, if you send any one of these signals, you "kill"
the process that receives it. However, programs can be set
up to Section 8.4 specific signals and take some other
action. For example, a text editor would do well to save
the file being edited before terminating when it receives a
signal such as INT, TERM, or QUIT. Determining what
to do when various signals come in is part of the fun of
UNIX systems programming.

522

Here is an example of kill. Say you have an alice process
in the background, with process ID 150 and job number
1, which needs to be stopped. You would start with this
command:

$ kill %1
If you were successful, you would see a message like
this:

[1]+ Terminated alice

If you don't see this, then the TERM signal failed to
terminate the job. The next step would be to try QUIT:

$ kill -QUIT %1
If that worked, you would see this message:

[1]+ Exit 131 alice

The 131 is the exit status returned by alice.[11] But if
even QUIT doesn't work, the "last-ditch" method would
be to use KILL:

$ kill -KILL %1
This produces the message:

[1]+ Killed alice

It is impossible for a process to Section 8.4 a KILL
signal—the operating system should terminate the
process immediately and unconditionally. If it doesn't,
then either your process is in one of the "funny states"

523

we'll see later in this chapter, or (far less likely) there's a
bug in your version of UNIX.

Here's another example.

Task 8-1

Write a script called killalljobs that kills all background
jobs.

The solution to this task is simple, relying on jobs -p:

kill "$@" $(jobs -p)

You may be tempted to use the KILL signal immediately,
instead of trying TERM (the default) and QUIT first.
Don't do this. TERM and QUIT are designed to give a
process the chance to "clean up" before exiting, whereas
KILL will stop the process, wherever it may be in its
computation. Use KILL only as a last resort!

You can use the kill command with any process you
create, not just jobs in the background of your current
shell. For example, if you use a windowing system, then
you may have several terminal windows, each of which
runs its own shell. If one shell is running a process that
you want to stop, you can kill it from another
window—but you can't refer to it with a job number
because it's running under a different shell. You must
instead use its process ID.

524

ps

This is probably the only situation in which a casual user
would need to know the ID of a process. The command
ps gives you this information; however, it can give you
lots of extra information as well.

ps is a complex command. It takes several options, some
of which differ from one version of UNIX to another. To
add to the confusion, you may need different options on
different UNIX versions to get the same information! We
will use options available on the two major types of
UNIX systems, those derived from System V (such as
many of the versions for Intel Pentium PCs, as well as
IBM's AIX and Hewlett-Packard's HP/UX) and BSD
(Mac OS X, SunOS, BSD/OS). If you aren't sure which
kind of UNIX version you have, try the System V options
first.

You can invoke ps in its simplest form without any
options. In this case, it will print a line of information
about the current login shell and any processes running
under it (i.e., background jobs). For example, if you were
to invoke three background jobs, as we saw earlier in the
chapter, the ps command on System V-derived versions
of UNIX would produce output that looks something like
this:

525

PID TTY TIME COMD
146 pts/10 0:03 -bash

2349 pts/10 0:03 alice
2367 pts/10 0:17 hatter
2389 pts/10 0:09 duchess
2390 pts/10 0:00 ps

The output on BSD-derived systems looks like this:

PID TT STAT TIME COMMAND
146 10 S 0:03 /bin/bash

2349 10 R 0:03 alice
2367 10 D 0:17 hatter teatime
2389 10 R 0:09 duchess
2390 10 R 0:00 ps

(You can ignore the STAT column.) This is a bit like the
jobs command. PID is the process ID; TTY (or TT) is the
terminal (or pseudo-terminal, if you are using a
windowing system) the process was invoked from; TIME
is the amount of processor time (not real or "wall clock"
time) the process has used so far; COMD (or
COMMAND) is the command. Notice that the BSD
version includes the command's arguments, if any; also
notice that the first line reports on the parent shell
process, and in the last line, ps reports on itself.

ps without arguments lists all processes started from the
current terminal or pseudo-terminal. But since ps is not a
shell command, it doesn't correlate process IDs with the
shell's job numbers. It also doesn't help you find the ID of
the runaway process in another shell window.

526

To get this information, use ps -a (for "all"); this lists
information on a different set of processes, depending on
your UNIX version.

System V

Instead of listing all processes that were started under a
specific terminal, ps -a on System V-derived systems lists
all processes associated with any terminal that aren't
group leaders. For our purposes, a "group leader" is the
parent shell of a terminal or window. Therefore, if you
are using a windowing system, ps -a lists all jobs started
in all windows (by all users), but not their parent shells.

Assume that, in the previous example, you have only one
terminal or window. Then ps -a will print the same output
as plain ps except for the first line, since that's the parent
shell. This doesn't seem to be very useful.

But consider what happens when you have multiple
windows open. Let's say you have three windows, all
running terminal emulators like xterm for the X Window
System. You start background jobs alice, duchess, and
hatter in windows with pseudo-terminal numbers 1, 2,
and 3, respectively. This situation is shown in Figure 8-1.

527

Figure 8-1. Background jobs in multiple
windows

Assume you are in the uppermost window. If you type ps,
you will see something like this:

PID TTY TIME COMD
146 pts/1 0:03 bash

2349 pts/1 0:03 alice
2390 pts/1 0:00 ps

But if you type ps -a, you will see this:

PID TTY TIME COMD
146 pts/1 0:03 bash

2349 pts/1 0:03 alice
2367 pts/2 0:17 duchess

528

2389 pts/3 0:09 hatter
2390 pts/1 0:00 ps

Now you should see how ps -a can help you track down a
runaway process. If it's hatter, you can type kill 2389. If
that doesn't work, try kill -QUIT 2389, or in the worst
case, kill -KILL 2389.

529

BSD

On BSD-derived systems, ps -a lists all jobs that were
started on any terminal; in other words, it's a bit like
concatenating the the results of plain ps for every user on
the system. Given the above scenario, ps -a will show
you all processes that the System V version shows, plus
the group leaders (parent shells).

Unfortunately, ps -a (on any version of UNIX) will not
report processes that are in certain conditions where they
"forget" things like what shell invoked them and what
terminal they belong to. Such processes are known as
"zombies" or "orphans." If you have a serious runaway
process problem, it's possible that the process has entered
one of these states.

Let's not worry about why or how a process gets this way.
All you need to understand is that the process doesn't
show up when you type ps -a. You need another option to
ps to see it: on System V, it's ps -e ("everything"),
whereas on BSD, it's ps -ax.

These options tell ps to list processes that either weren't
started from terminals or "forgot" what terminal they
were started from. The former category includes lots of
processes that you probably didn't even know existed:
these include basic processes that run the system and
so-called daemons (pronounced "demons") that handle

530

system services like mail, printing, network filesystems,
etc.

In fact, the output of ps -e or ps -ax is an excellent source
of education about UNIX system internals, if you're
curious about them. Run the command on your system
and, for each line of the listing that looks interesting,
invoke man on the process name or look it up in the
UNIX Programmer's Manual for your system.

User shells and processes are listed at the very bottom of
ps -e or ps -ax output; this is where you should look for
runaway processes. Notice that many processes in the
listing have ? instead of a terminal. Either these aren't
supposed to have one (such as the basic daemons) or
they're runaways. Therefore it's likely that if ps -a doesn't
find a process you're trying to kill, ps -e (or ps -ax) will
list it with ? in the TTY (or TT) column. You can
determine which process you want by looking at the
COMD (or COMMAND) column.

[8] Pipes and signals were the only IPC mechanisms in
early versions of UNIX. More modern versions like
System V and BSD have additional mechanisms, such as
sockets, named pipes, and shared memory. Named pipes
are accessible to shell programmers through the mknod(1)
command, which is beyond the scope of this book.

[9] CTRL-\ can also cause the shell to leave a file called
core in your current directory. This file contains an image

531

of the process to which you sent the signal; a programmer
could use it to help debug the program that was running.
The file's name is a (very) old-fashioned term for a
computer's memory. Other signals leave these "core
dumps" as well; unless you require them, or someone else
does, just delete them.

[10] Some BSD-derived systems have additional
control-key signals.

[11] When a shell script is sent a signal, it exits with status
128+N, where N is the number of the signal it received. In
this case, alice is a shell script, and QUIT happens to be
signal number 3.

532

trap
We've been discussing how signals affect the casual user;
now let's talk a bit about how shell programmers can use
them. We won't go into too much depth about this,
because it's really the domain of systems programmers.

We mentioned above that programs in general can be set
up to Section 8.4 specific signals and process them in
their own way. The trap built-in command lets you do
this from within a shell script. trap is most important for
"bullet-proofing" large shell programs so that they react
appropriately to abnormal events—just as programs in
any language should guard against invalid input. It's also
important for certain systems programming tasks, as we'll
see in the next chapter.

The syntax of trap is:

trap cmd sig1 sig2 ...

That is, when any of sig1, sig2, etc., are received, run
cmd, then resume execution. After cmd finishes, the script
resumes execution just after the command that was
interrupted.[12]

Of course, cmd can be a script or function. The sigs can
be specified by name or by number. You can also invoke
trap without arguments, in which case the shell will print

533

a list of any traps that have been set, using symbolic
names for the signals.

Here's a simple example that shows how trap works.
Suppose we have a shell script called loop with this code:

while true; do
sleep 60

done

This will just pause for 60 seconds (the sleep command)
and repeat indefinitely. true is a "do-nothing" command
whose exit status is always 0.[13] Try typing in this script.
Invoke it, let it run for a little while, then type CTRL-C
(assuming that is your interrupt key). It should stop, and
you should get your shell prompt back.

Now insert this line at the beginning of the script:

trap "echo 'You hit control-C!'" INT

Invoke the script again. Now hit CTRL-C. The odds are
overwhelming that you are interrupting the sleep
command (as opposed to true). You should see the
message "You hit control-C!", and the script will not stop
running; instead, the sleep command will abort, and it
will loop around and start another sleep. Hit CTRL-Z to
get it to stop and then type kill %1.

Next, run the script in the background by typing loop &.
Type kill %loop (i.e., send it the TERM signal); the
script will terminate. Add TERM to the trap command,
so that it looks like this:

534

trap "echo 'You hit control-C!'" INT TERM

Now repeat the process: run it in the background and type
kill %loop. As before, you will see the message and the
process will keep on running. Type kill -KILL %loop to
stop it.

Notice that the message isn't really appropriate when you
use kill. We'll change the script so it prints a better
message in the kill case:

trap "echo 'You hit control-C!'" INT
trap "echo 'You tried to kill me!'" TERM

while true; do
sleep 60

done

Now try it both ways: in the foreground with CTRL-C
and in the background with kill. You'll see different
messages.

Traps and Functions

The relationship between traps and shell functions is
straightforward, but it has certain nuances that are worth
discussing. The most important thing to understand is that
functions are considered part of the shell that invokes
them. This means that traps defined in the invoking shell
will be recognized inside the function, and more
importantly, any traps defined in the function will be

535

recognized by the invoking shell once the function has
been called. Consider this code:

settrap () {
trap "echo 'You hit control-C!'" INT

}

settrap
while true; do

sleep 60
done

If you invoke this script and hit your interrupt key, it will
print "You hit control-C!" In this case the trap defined in
settrap still exists when the function exits.

Now consider:

loop () {
trap "echo 'How dare you!'" INT
while true; do

sleep 60
done

}

trap "echo 'You hit control-C!'" INT
loop

When you run this script and hit your interrupt key, it will
print "How dare you!" In this case the trap is defined in
the calling script, but when the function is called the trap
is redefined. The first definition is lost. A similar thing
happens with:

loop () {
trap "echo 'How dare you!'" INT

536

}

trap "echo 'You hit control-C!'" INT
loop
while true; do

sleep 60
done

Once again, the trap is redefined in the function; this is
the definition used once the loop is entered.

We'll now show a more practical example of traps.

Task 8-2

As part of an electronic mail system, write the shell
code that lets a user compose a message.

The basic idea is to use cat to create the message in a
temporary file and then hand the file's name off to a
program that actually sends the message to its destination.
The code to create the file is very simple:

msgfile=/tmp/msg$$
cat > $msgfile

Since cat without an argument reads from the standard
input, this will just wait for the user to type a message
and end it with the end-of-text character CTRL-D.

537

Process ID Variables and
Temporary Files

The only thing new about this script is $$ in the filename
expression. This is a special shell variable whose value is
the process ID of the current shell.

To see how $$ works, type ps and note the process ID of
your shell process (bash). Then type echo "$$"; the shell
will respond with that same number. Now type bash to
start a subshell, and when you get a prompt, repeat the
process. You should see a different number, probably
slightly higher than the last one.

A related built-in shell variable is ! (i.e., its value is $!),
which contains the process ID of the most recently
invoked background job. To see how this works, invoke
any job in the background and note the process ID printed
by the shell next to [1]. Then type echo "$!"; you should
see the same number.

To return to our mail example: since all processes on the
system must have unique process IDs, $$ is excellent for
constructing names of temporary files.

538

The directory /tmp is conventionally used for temporary
files. Many systems also have another directory, /var/tmp,
for the same purpose.

Nevertheless, a program should clean up such files before
it exits, to avoid taking up unnecessary disk space. We
could do this in our code very easily by adding the line
rm $msgfile after the code that actually sends the
message. But what if the program receives a signal during
execution? For example, what if a user changes her mind
about sending the message and hits CTRL-C to stop the
process? We would need to clean up before exiting. We'll
emulate the actual UNIX mail system by saving the
message being written in a file called dead.letter in the
current directory. We can do this by using trap with a
command string that includes an exit command:

trap 'mv $msgfile dead.letter; exit' INT TERM
msgfile=/tmp/msg$$
cat > $msgfile
send the contents of $msgfile to the specified mail address...
rm $msgfile

When the script receives an INT or TERM signal, it will
remove the temp file and then exit. Note that the
command string isn't evaluated until it needs to be run, so
$msgfile will contain the correct value; that's why we
surround the string in single quotes.

But what if the script receives a signal before msgfile is
created—unlikely though that may be? Then mv will try
to rename a file that doesn't exist. To fix this, we need to
test for the existence of the file $msgfile before trying to

539

delete it. The code for this is a bit unwieldy to put in a
single command string, so we'll use a function instead:

function cleanup {
if [-e $msgfile]; then

mv $msgfile dead.letter
fi
exit

}

trap cleanup INT TERM

msgfile=/tmp/msg$$
cat > $msgfile
send the contents of $msgfile to the specified mail address...
rm $msgfile

540

Ignoring Signals

Sometimes a signal comes in that you don't want to do
anything about. If you give the null string ("" or `') as the
command argument to trap, then the shell will effectively
ignore that signal. The classic example of a signal you
may want to ignore is HUP (hangup). This can occur on
some UNIX systems when a hangup (disconnection while
using a modem—literally "hanging up") or some other
network outage takes place.

HUP has the usual default behavior: it will kill the
process that receives it. But there are bound to be times
when you don't want a background job to terminate when
it receives a hangup signal.

To do this, you could write a simple function that looks
like this:

function ignorehup {
trap "" HUP
eval "$@"

}

We write this as a function instead of a script for reasons
that will become clearer when we look in detail at
subshells at the end of this chapter.

541

Actually, there is a UNIX command called nohup that
does precisely this. The start script from the last chapter
could include nohup:

eval nohup "$@" > logfile 2>&1 &

This prevents HUP from terminating your command and
saves its standard and error output in a file. Actually, the
following is just as good:

nohup "$@" > logfile 2>&1 &

If you understand why eval is essentially redundant when
you use nohup in this case, then you have a firm grasp on
the material in the previous chapter. Note that if you don't
specify a redirection for any output from the command,
nohup places it in a file called nohup.out.

542

disown

Another way to ignore the HUP signal is with the disown
built-in.[14] disown takes as an argument a job
specification, such as the process ID or job ID, and
removes the process from the list of jobs. The process is
effectively "disowned" by the shell from that point on,
i.e., you can only refer to it by its process ID since it is no
longer in the job table.

disown's -h option performs the same function as nohup;
it specifies that the shell should stop the hangup signal
from reaching the process under certain circumstances.
Unlike nohup, it is up to you to specify where the output
from the process is to go.

disown also provides two options which can be of use. -a
with no other arguments applies the operation to all jobs
owned by the shell. The -r option with does the same but
only for currently running jobs.

543

Resetting Traps

Another "special case" of the trap command occurs when
you give a dash (-) as the command argument. This resets
the action taken when the signal is received to the default,
which usually is termination of the process.

As an example of this, let's return to Task 8-2, our mail
program. After the user has finished sending the message,
the temporary file is erased. At that point, since there is
no longer any need to clean up, we can reset the signal
trap to its default state. The code for this, apart from
function definitions, is:

trap abortmsg INT
trap cleanup TERM

msgfile=/tmp/msg$$
cat > $msgfile
send the contents of $msgfile to the specified mail address...
rm $msgfile

trap - INT TERM

The last line of this code resets the handlers for the INT
and TERM signals.

At this point you may be thinking that you could get
seriously carried away with signal handling in a shell
script. It is true that "industrial strength" programs devote

544

considerable amounts of code to dealing with signals. But
these programs are almost always large enough so that
the signal-handling code is a tiny fraction of the whole
thing. For example, you can bet that the real UNIX mail
system is pretty darn bullet-proof.

However, you will probably never write a shell script that
is complex enough, and that needs to be robust enough, to
merit lots of signal handling. You may write a prototype
for a program as large as mail in shell code, but
prototypes by definition do not need to be bullet-proofed.

Therefore, you shouldn't worry about putting
signal-handling code in every 20-line shell script you
write. Our advice is to determine if there are any
situations in which a signal could cause your program to
do something seriously bad and add code to deal with
those contingencies. What is "seriously bad"? Well, with
respect to the above examples, we'd say that the case
where HUP causes your job to terminate is seriously bad,
while the temporary file situation in our mail program is
not.

[12] This is what usually happens. Sometimes the
command currently running will abort (sleep acts like
this, as we'll see soon); at other times it will finish
running. Further details are beyond the scope of this
book.

545

[13] This command is the same as the built-in shell no-op
command ":".

[14] disown is not available in versions of bash prior to
2.0.

546

Coroutines
We've spent the last several pages on almost microscopic
details of process behavior. Rather than continue our
descent into the murky depths, we'll revert to a
higher-level view of processes.

Earlier in this chapter, we covered ways of controlling
multiple simultaneous jobs within an interactive login
session; now we'll consider multiple process control
within shell programs. When two (or more) processes are
explicitly programmed to run simultaneously and
possibly communicate with each other, we call them
coroutines.

This is actually nothing new: a pipeline is an example of
coroutines. The shell's pipeline construct encapsulates a
fairly sophisticated set of rules about how processes
interact with each other. If we take a closer look at these
rules, we'll be better able to understand other ways of
handling coroutines—most of which turn out to be
simpler than pipelines.

When you invoke a simple pipeline—say, ls | more—the
shell invokes a series of UNIX primitive operations, or
system calls. In effect, the shell tells UNIX to do the
following things; in case you're interested, we include in
parentheses the actual system call used at each step:

547

1. Create two subprocesses, which we'll call P1 and
P2 (the fork system call).

2. Set up I/O between the processes so that P1's
standard output feeds into P2's standard input
(pipe).

3. Start /bin/ls in process P1 (exec).

4. Start /bin/more in process P2 (exec).

5. Wait for both processes to finish (wait).

You can probably imagine how the above steps change
when the pipeline involves more than two processes.

Now let's make things simpler. We'll see how to get
multiple processes to run at the same time if the processes
do not need to communicate. For example, we want the
processes alice and hatter to run as coroutines, without
communication, in a shell script. Our initial solution
would be this:

alice &
hatter

Assume for the moment that hatter is the last command
in the script. The above will work—but only if alice
finishes first. If alice is still running when the script
finishes, then it becomes an orphan, i.e., it enters one of
the "funny states" we mentioned earlier in this chapter.
Never mind the details of orphanhood; just believe that

548

you don't want this to happen, and if it does, you may
need to use the "runaway process" method of stopping it,
discussed earlier in this chapter.

wait

There is a way of making sure the script doesn't finish
before alice does: the built-in command wait. Without
arguments, wait simply waits until all background jobs
have finished. So to make sure the above code behaves
properly, we would add wait, like this:

alice &
hatter
wait

Here, if hatter finishes first, the parent shell will wait for
alice to finish before finishing itself.

If your script has more than one background job and you
need to wait for specific ones to finish, you can give wait
the process ID of the job.

However, you will probably find that wait without
arguments suffices for all coroutines you will ever
program. Situations in which you would need to wait for
specific background jobs are quite complex and beyond
the scope of this book.

549

Advantages and
Disadvantages of
Coroutines

In fact, you may be wondering why you would ever need
to program coroutines that don't communicate with each
other. For example, why not just run hatter after alice in
the usual way? What advantage is there in running the
two jobs simultaneously?

Even if you are running on a computer with only one
processor (CPU), then there may be a performance
advantage.

Roughly speaking, you can characterize a process in
terms of how it uses system resources in three ways:
whether it is CPU-intensive (e.g., does lots of number
crunching), I/O-intensive (does a lot of reading or writing
to the disk), or interactive (requires user intervention).

We already know from Chapter 1 that it makes no sense
to run an interactive job in the background. But apart
from that, the more two or more processes differ with
respect to these three criteria, the more advantage there is
in running them simultaneously. For example, a
number-crunching statistical calculation would do well

550

when running at the same time as a long, I/O-intensive
database query.

On the other hand, if two processes use resources in
similar ways, it may even be less efficient to run them at
the same time as it would be to run them sequentially.
Why? Basically, because under such circumstances, the
operating system often has to "time-slice" the resource(s)
in contention.

For example, if both processes are "disk hogs," the
operating system may enter a mode where it constantly
switches control of the disk back and forth between the
two competing processes; the system ends up spending at
least as much time doing the switching as it does on the
processes themselves. This phenomenon is known as
thrashing; at its most severe, it can cause a system to
come to a virtual standstill. Thrashing is a common
problem; system administrators and operating system
designers both spend lots of time trying to minimize it.

551

Parallelization

If you have a computer with multiple CPUs you should
be less concerned about thrashing. Furthermore,
coroutines can provide dramatic increases in speed on this
type of machine, which is often called a parallel
computer; analogously, breaking up a process into
coroutines is sometimes called parallelizing the job.

Normally, when you start a background job on a
multiple-CPU machine, the computer will assign it to the
next available processor. This means that the two jobs are
actually—not just metaphorically—running at the same
time.

In this case, the running time of the coroutines is
essentially equal to that of the longest-running job plus a
bit of overhead, instead of the sum of the runtimes of all
processes (although if the CPUs all share a common disk
drive, the possibility of I/O-related thrashing still exists).
In the best case—all jobs having the same runtime and no
I/O contention—you get a speedup factor equal to the
number of CPUs.

Parallelizing a program is often not easy; there are several
subtle issues involved and there's plenty of room for
error. Nevertheless, it's worthwhile to know how to
parallelize a shell script whether or not you have a

552

parallel machine, especially since such machines are
becoming more and more common.

We'll show how to do this—and give you an idea of some
problems involved—by means of a simple task whose
solution is amenable to parallelization.

Task 8-3

Write a utility that allows you to make multiple copies
of a file at the same time.

We'll call this script mcp. The command mcp filename
dest1 dest2 ... should copy filename to all of the
destinations given. The code for this should be fairly
obvious:

file=$1
shift
for dest in "$@"; do

cp $file $dest
done

Now let's say we have a parallel computer and we want
this command to run as fast as possible. To parallelize
this script, it's a simple matter of firing off the cp
commands in the background and adding a wait at the
end:

file=$1
shift

553

for dest in "$@"; do
cp $file $dest &

done
wait

Simple, right? Well, there is one little problem: what
happens if the user specifies duplicate destinations? If
you're lucky, the file just gets copied to the same place
twice. Otherwise, the identical cp commands will
interfere with each other, possibly resulting in a file that
contains two interspersed copies of the original file. In
contrast, if you give the regular cp command two
arguments that point to the same file, it will print an error
message and do nothing.

To fix this problem, we would have to write code that
checks the argument list for duplicates. Although this isn't
too hard to do (see the exercises at the end of this
chapter), the time it takes that code to run might offset
any gain in speed from parallelization; furthermore, the
code that does the checking detracts from the simple
elegance of the script.

As you can see, even a seemingly trivial parallelization
task has problems resulting from multiple processes that
have concurrent access to a given system resource (a file
in this case). Such problems, known as concurrency
control issues, become much more difficult as the
complexity of the application increases. Complex
concurrent programs often have much more code for
handling the special cases than for the actual job the
program is supposed to do!

554

Therefore, it shouldn't surprise you that much research
has been and is being done on parallelization, the ultimate
goal being to devise a tool that parallelizes code
automatically. (Such tools do exist; they usually work in
the confines of some narrow subset of the problem.) Even
if you don't have access to a multiple-CPU machine,
parallelizing a shell script is an interesting exercise that
should acquaint you with some of the issues that surround
coroutines.

555

Subshells
To conclude this chapter, we will look at a simple type of
interprocess relationship: that of a subshell with its parent
shell. We saw in Chapter 3 that whenever you run a shell
script, you actually invoke another copy of the shell that
is a subprocess of the main, or parent, shell process. Now
let's look at subshells in more detail.

Subshell Inheritance

The most important things you need to know about
subshells are what characteristics they get, or inherit,
from their parents. These are as follows:

• The current directory

• Environment variables

• Standard input, output, and error, plus any other
open file descriptors

• Signals that are ignored

Just as important are the things that a subshell does not
inherit from its parent:

556

• Shell variables, except environment variables and
those defined in the environment file (usually
.bashrc)

• Handling of signals that are not ignored

We covered some of this in Chapter 3, but these points
are common sources of confusion, so they bear repeating.

557

Nested Subshells

Subshells need not be in separate scripts; you can also
start a subshell within the same script (or function) as the
parent. You do this in a manner very similar to the
command blocks we saw in the last chapter. Just surround
some shell code with parentheses (instead of curly
brackets), and that code will run in a subshell. We'll call
this a nested subshell.

For example, here is the calculator program from the last
chapter, with a subshell instead of a command block:

(while read line; do
echo "$(alg2rpn $line)"

done
) | dc

The code inside the parentheses will run as a separate
process. This is usually less efficient than a command
block. The differences in functionality between subshells
and command blocks are very few; they primarily pertain
to issues of scope, i.e., the domains in which definitions
of things like shell variables and signal traps are known.
First, code inside a nested subshell obeys the above rules
of subshell inheritance, except that it knows about
variables defined in the surrounding shell; in contrast,
think of blocks as code units that inherit everything from
the outer shell. Second, variables and traps defined inside

558

a command block are known to the shell code after the
block, whereas those defined in a subshell are not.

For example, consider this code:

{
hatter=mad
trap "echo 'You hit CTRL-C!'" INT

}
while true; do

echo "\$hatter is $hatter"
sleep 60

done

If you run this code, you will see the message $hatter is
mad every 60 seconds, and if you hit CTRL-C, you will
see the message, You hit CTRL-C!. You will need to hit
CTRL-Z to stop it (don't forget to kill it with kill %+).
Now let's change it to a nested subshell:

(
hatter=mad
trap "echo 'You hit CTRL-C!'" INT

)
while true; do

echo "\$hatter is $hatter"
sleep 60

done

If you run this, you will see the message $hatter is; the
outer shell doesn't know about the subshell's definition of
hatter and therefore thinks it's null. Furthermore, the
outer shell doesn't know about the subshell's trap of the
INT signal, so if you hit CTRL-C, the script will
terminate.

559

If a language supports code nesting, then it's considered
desirable that definitions inside a nested unit have a scope
limited to that nested unit. In other words, nested
subshells give you better control than command blocks
over the scope of variables and signal traps. Therefore,
we feel that you should use subshells instead of command
blocks if they are to contain variable definitions or signal
traps—unless efficiency is a concern.

560

Process Substitution
A unique but rarely used feature of bash is process
substitution. Let's say that you had two versions of a
program that produced large quantities of output. You
want to see the differences between the output from each
version. You could run the two programs, redirecting
their output to files, and then use the cmp utility to see
what the differences were.

Another way would be to use process substitution. There
are two forms of this substitution. One is for input to a
process: >(list); the other is for output from a process:
<(list). list is a process that has its input or output
connected to something via a named pipe. A named pipe
is simply a temporary file that acts like a pipe with a
name.

In our case, we could connect the outputs of the two
programs to the input of cmp via named pipes:

cmp <(prog1) <(prog2)

prog1 and prog2 are run concurrently and connect their
outputs to named pipes. cmp reads from each of the pipes
and compares the information, printing any differences as
it does so.

This chapter has covered a lot of territory. Here are some
exercises that should help you make sure you have a firm

561

grasp on the material. Don't worry if you have trouble
with the last one; it's especially difficult.

1. Write a shell script called pinfo that combines the
jobs and ps commands by printing a list of jobs
with their job numbers, corresponding process
IDs, running times, and full commands.

2. Take a non-trivial shell script and "bullet-proof"
it with signal traps.

3. Take a non-trivial shell script and parallelize it as
much as possible.

4. Write the code that checks for duplicate
arguments to the mcp script. Bear in mind that
different pathnames can point to the same file.
(Hint: if $i is "1", then eval `echo \${$i}' prints
the first command-line argument. Make sure you
understand why.)

562

Chapter 9. Debugging
Shell Programs
We hope that we have convinced you that bash can be
used as a serious UNIX programming environment. It
certainly has enough features, control structures, etc. But
another essential part of a programming environment is a
set of powerful, integrated support tools. For example,
there is a wide assortment of screen editors, compilers,
debuggers, profilers, cross-referencers, etc., for languages
like C and C++. If you program in one of these
languages, you probably take such tools for granted, and
you would undoubtedly cringe at the thought of having to
develop code with, say, the ed editor and the adb
machine-language debugger.

But what about programming support tools for bash? Of
course, you can use any editor you like, including vi and
emacs. And because the shell is an interpreted language,
you don't need a compiler.[1] But there are no other tools
available.

This chapter looks at some useful features that you can
use to debug shell programs. We'll look at how you can
utilize them in the first part of this chapter. We'll then
look at some powerful new features of bash, not present
in most Bourne shell workalikes, which will help in
building a shell script debugging tool. At the end of the

563

chapter, we'll show step by step how to build a debugger
for bash. The debugger, called bashdb, is a basic yet
functional program that will not only serve as an
extended example of various shell programming
techniques, but will also provide you with a useful tool
for examining the workings of your own shell scripts.

Basic Debugging Aids
What sort of functionality do you need to debug a
program? At the most empirical level, you need a way of
determining what is causing your program to behave
badly, and where the problem is in the code. You usually
start with an obvious what (such as an error message,
inappropriate output, infinite loop, etc.), try to work
backwards until you find a what that is closer to the
actual problem (e.g., a variable with a bad value, a bad
option to a command), and eventually arrive at the exact
where in your program. Then you can worry about how to
fix it.

Notice that these steps represent a process of starting with
obvious information and ending up with often obscure
facts gleaned through deduction and intuition. Debugging
aids make it easier to deduce and intuit by providing
relevant information easily or even automatically,
preferably without modifying your code.

The simplest debugging aid (for any language) is the
output statement, echo, in the shell's case. Indeed,

564

old-time programmers debugged their FORTRAN code
by inserting WRITE cards into their decks. You can
debug by putting lots of echo statements in your code
(and removing them later), but you will have to spend lots
of time narrowing down not only what exact information
you want but also where you need to see it. You will also
probably have to wade through lots and lots of output to
find the information you really want.

Set Options

Luckily, the shell has a few basic features that give you
debugging functionality beyond that of echo. The most
basic of these are options to the set -o command (as
covered in Chapter 3). These options can also be used on
the command line when running a script, as Table 9-1
shows.

Table 9-1. Debugging options

set -o
option

Command-line
option Action

noexec -n Don't run commands; check
for syntax errors only

565

set -o
option

Command-line
option Action

verbose -v Echo commands before
running them

xtrace -x Echo commands after
command-line processing

The verbose option simply echoes (to standard error)
whatever input the shell gets. It is useful for finding the
exact point at which a script is bombing. For example,
assume your script looks like this:

alice
hatter
march
teatime
treacle
well

None of these commands is a standard UNIX program,
and each does its work silently. Say the script crashes
with a cryptic message like "segmentation violation."
This tells you nothing about which command caused the
error. If you type bash -v scriptname, you might see this:

566

alice
hatter
march
segmentation violation
teatime
treacle
well

Now you know that march is the probable
culprit—though it is also possible that march bombed
because of something it expected alice or hatter to do
(e.g., create an input file) that they did incorrectly.

The xtrace option is more powerful: it echoes command
lines after they have been through parameter substitution,
command substitution, and the other steps of
command-line processing (as listed in Chapter 7). For
example:

.ps 8
$ set -o xtrace$ alice=girl+ alice=girl
$ echo "$alice"+ echo girl
girl
$ ls -l $(type -path vi)++ type -path vi
+ ls -F -l /usr/bin/vi
lrwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*
$

As you can see, xtrace starts each line it prints with +
(each + representing a level of expansion). This is
actually customizable: it's the value of the built-in shell
variable PS4. So if you set PS4 to "xtrace—>" (e.g., in
your .bash_profile or .bashrc), then you'll get xtrace
listings that look like this:

567

.ps 8
$ ls -l $(type -path vi)xxtrace--> type -path vi
xtrace--> ls -l /usr/bin/vi
lrwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*
$

Notice that for multiple levels of expansion, only the first
character of PS4 is printed. This makes the output more
readable.

An even better way of customizing PS4 is to use a
built-in variable we haven't seen yet: LINENO, which
holds the number of the currently running line in a shell
script.[2] Put this line in your .bash_profile or
environment file:

PS4='line $LINENO: '

We use the same technique as we did with PS1 in
Chapter 3: using single quotes to postpone the evaluation
of the string until each time the shell prints the prompt.
This will print messages of the form line N: in your trace
output. You could even include the name of the shell
script you're debugging in this prompt by using the
positional parameter $0:

PS4='$0 line $LINENO: '

As another example, say you are trying to track down a
bug in a script called alice that contains this code:

dbfmq=$1.fmq
...
fndrs=$(cut -f3 -d' ' $dfbmq)

568

You type alice teatime to run it in the normal way, and it
hangs. Then you type bash -x alice teatime, and you see
this:

+ dbfmq=teatime.fmq
...
+ + cut -f3 -d

It hangs again at this point. You notice that cut doesn't
have a filename argument, which means that there must
be something wrong with the variable dbfmq. But it has
executed the assignment statement dbfmq=teatime.fmq
properly... ah-hah! You made a typo in the variable name
inside the command substitution construct.[3] You fix it,
and the script works properly.

The last option is noexec, which reads in the shell script
and checks for syntax errors, but doesn't execute
anything. It's worth using if your script is syntactically
complex (lots of loops, command blocks, string operators,
etc.) and the bug has side effects (like creating a large file
or hanging up the system).

You can turn on these options with set -o option in your
shell scripts, and, as explained in Chapter 3, turn them off
with set +o option. For example, if you're debugging a
chunk of code, you can precede it with set -o xtrace to
print out the executed commands, and end the chunk with
set +o xtrace.

569

Note, however, that once you have turned noexec on, you
won't be able to turn it off; a set +o noexec will never be
executed.

570

Fake Signals

Fake signals are more sophisticated set of debugging
aids. They can be used in trap statements to get the shell
to act under certain conditions. Recall from the previous
chapter that trap allows you to install some code that
runs when a particular signal is sent to your script.

Fake signals work in the same way, but they are
generated by the shell itself, as opposed to the other
signals which are generated externally. They represent
runtime events that are likely to be of interest to
debuggers—both human ones and software tools—and
can be treated just like real signals within shell scripts.
Table 9-2 lists the four fake signals available in bash.

Table 9-2. Fake signals

Fake
signal Sent when

EXIT The shell exits from script

ERR A command returning a non-zero exit status

571

Fake
signal Sent when

DEBUG The shell has executed a statement[4]

RETURN A shell function or a script executed with
the . or source builtins finishes executing[5]

[4] The DEBUG signal is not available in bash versions
prior to 2.0.

[5] The RETURN signal is not available in bash
versions prior to 3.0.

EXIT

The EXIT trap, when set, will run its code whenever the
script within which it was set exits.[6]

Here's a simple example:

trap 'echo exiting from the script' EXIT
echo 'start of the script'

If you run this script, you will see this output:

572

start of the script
exiting from the script

In other words, the script starts by setting the trap for its
own exit, then prints a message. The script then exits,
which causes the shell to generate the signal EXIT, which
in turn runs the code echo exiting from the script.

An EXIT trap occurs no matter how the script
exits—whether normally (by finishing the last statement),
by an explicit exit or return statement, or by receiving a
"real" signal such as INT or TERM. Consider this inane
number-guessing program:

trap 'echo Thank you for playing!' EXIT

magicnum=$(($RANDOM%10+1))
echo 'Guess a number between 1 and 10:'
while read -p 'Guess: ' guess ; do

sleep 4
if ["$guess" = $magicnum]; then

echo 'Right!'
exit

fi
echo 'Wrong!'

done

This program picks a number between 1 and 10 by
getting a random number (the built-in variable
RANDOM), extracting the last digit (the remainder when
divided by 10), and adding 1. Then it prompts you for a
guess, and after 4 seconds, it will tell you if you guessed
right.

573

If you did, the program will exit with the message,
"Thank you for playing!", i.e., it will run the EXIT trap
code. If you were wrong, it will prompt you again and
repeat the process until you get it right. If you get bored
with this little game and hit CTRL-C or CTRL-D while
waiting for it to tell you whether you were right, you will
also see the message.

The EXIT trap is especially useful when you want to print
out the values of variables at the point that your script
exits. For example, by printing the value of loop counter
variables, you can find the most appropriate places in a
complicated script, with many nested for loops, to enable
xtrace or place debug output.

574

ERR

The fake signal ERR enables you to run code whenever a
command in the surrounding script or function exits with
non-zero status. Trap code for ERR can take advantage of
the built-in variable ?, which holds the exit status of the
previous command. It survives the trap and is accessible
at the beginning of the trap-handling code.

A simple but effective use of this is to put the following
code into a script you want to debug:

function errtrap {
es=$?
echo "ERROR: Command exited with status $es."

}
trap errtrap ERR

The first line saves the nonzero exit status in the local
variable es.

For example, if the shell can't find a command, it returns
status 127. If you put the code in a script with a line of
gibberish (like "nhbdeuje"), the shell responds with:

scriptname: line N: nhbdeuje: command not found
ERROR: command exited with status 127.

N is the number of the line in the script that contains the
bad command. In this case, the shell prints the line
number as part of its own error-reporting mechanism,

575

since the error was a command that the shell could not
find. But if the nonzero exit status comes from another
program, the shell doesn't report the line number. For
example:

function errtrap {
es=$?
echo "ERROR: Command exited with status $es."

}
trap errtrap ERR
function bad {

return 17
}
bad

This only prints ERROR: Command exited with status
17.

It would obviously be an improvement to include the line
number in this error message. The built-in variable
LINENO exists, but if you use it inside a function, it
evaluates to the line number in the function, not in the
overall file. In other words, if you used $LINENO in the
echo statement in the errtrap routine, it would always
evaluate to 2.

To get around this problem, we simply pass $LINENO as
an argument to the trap handler, surrounding it in single
quotes so that it doesn't get evaluated until the fake signal
actually comes in:

function errtrap {
es=$?
echo "ERROR line $1: Command exited with status $es."

576

}
trap 'errtrap $LINENO' ERR
...

If you use this with the above example, the result is the
message, ERROR line 12: Command exited with
status 17. This is much more useful. We'll see a variation
on this technique shortly.

This simple code is actually not a bad all-purpose
debugging mechanism. It takes into account that a
nonzero exit status does not necessarily indicate an
undesirable condition or event: remember that every
control construct with a conditional (if, while, etc.) uses a
nonzero exit status to mean "false." Accordingly, the shell
doesn't generate ERR traps when statements or
expressions in the "condition" parts of control structures
produce nonzero exit statuses. Also, an ERR trap is not
inherited by shell functions, command substitutions, and
commands executed in a subshell. However this
inheritance behaviour can be turned on by using set -o
errtrace (or set -E).[7]

One disadvantage is that exit statuses are not as uniform
(or even as meaningful) as they should be, as we
explained in Chapter 5. A particular exit status need not
say anything about the nature of the error or even that
there was an error.

577

DEBUG

Another fake signal, DEBUG, causes the trap code to be
executed before every statement in a function or script.[8]

This has two main uses. First is the use for humans, as a
sort of "brute force" method of tracking a certain element
of a program's state that you notice has gone awry.

For example, you notice the value of a particular variable
is running amok. The naive approach is to put in a lot of
echo statements to check the variable's value at several
points. The DEBUG trap makes this easier by letting you
do this:

function dbgtrap
{

echo "badvar
is
$badvar"

}

trap dbgtrap DEBUG
...section of code in which the problem occurs...
trap - DEBUG # turn off the DEBUG trap

This code will print the value of the wayward variable
before every statement between the two traps.

One important point to remember when using DEBUG is
that it is not inherited by functions called from the shell in
which it is set. In other words, if your shell sets a

578

DEBUG trap and then calls a function, the statements
within the function will not execute the trap. There are
three ways around this. Firstly you can set a trap for
DEBUG explicitly within the function. Alternately you
can declare the function with the -t option which turns on
debug inheritance in functions and allows a function to
inherit a DEBUG trap from the caller. Lastly you can use
set -o functrace (or set -T) which does the same thing as
declare but applies to all functions.[9]

The second use of the DEBUG signal is as a primitive for
implementing a bash debugger. We'll look at doing just
that shortly.

579

RETURN

A RETURN trap is executed each time a shell function or
a script executed with the . or source commands finishes
executing.

As with DEBUG, the RETURN trap is not inherited by
functions. You again have the options of setting the trap
for RETURN within the function, declare the function
with the -t option so that that function inherits the trap, or
use set -o functrace to turn on the inheritance for all
functions.

Here is a simple example of a RETURN trap:

function returntrap {
echo "A return occurred"

}
trap returntrap RETURN
function hello {

echo "hello world"
}
hello

When the script is executed it executes the hello function
and then runs the trap:

$./returndemo
hello world
A return occurred
$

580

Notice that it didn't trap when the script itself finished.
The trap would only have run at the end of the script if
we'd sourced the script. Normally, to trap at the exiting of
the script we'd also need to define a trap for the EXIT
signal that we looked at earlier.

In addition to these fake signals, bash 3.0 added some
other features to help with writing a full-scale debugger
for bash. The first of these is the extdebug option to the
shopt command, which switches on certain things that
are useful for a debugger. These include:

• The -F option to declare displays the source
filename and line number corresponding to each
function name supplied as an argument.

• If the command that is run by the DEBUG trap
returns a non-zero value, the next command is
skipped and not executed.

• If the command run by the DEBUG trap returns a
value of 2, and the shell is executing in a
subroutine (a shell function or a shell script
executed by the . or source commands), a call to
return is simulated.

The shell also has a new option, —debugger, which
switches on both the extdebug and functrace
functionality.

581

Debugging Variables

Bash 3.0 added some useful environment variables to aid
in writing a debugger. These include BASH_SOURCE,
which contains an array of filenames that correspond to
what is currently executing; BASH_LINENO, which is
an array of line numbers that correspond to function calls
that have been made; BASH_ARGC and BASH_ARGV
array variables, the first holding the number of
parameters in each frame and the second the parameters
themselves.

We'll now look at writing a debugger, although we'll keep
things simple and avoid using these variables. This also
means the debugger will work with earlier versions of
bash.

[1] Actually, if you are really concerned about efficiency,
there are shell code compilers on the market; they convert
shell scripts to C code that often runs quite a bit faster.

[2] In versions of bash prior to 2.0, LINENO won't give
you the current line in a function. LINENO, instead,
gives an approximation of the number of simple
commands executed so far in the current function.

582

[3] We should admit that if you had turned on the nounset
option at the top of this script, the shell would have
flagged this error.

[6] You can use this signal only for the exiting of a script.
Functions don't generate the EXIT signal, as they are part
of the current shell invocation.

[7] Inheritance of the ERR trap is not available in versions
of bash prior to 3.0.

[8] Warning: the DEBUG trap was run after statements in
versions of bash prior to 2.05b. The debugger in this
chapter has been written for the current version of bash
where the trap is run before each statement.

[9] Inheritance of the DEBUG trap, declare -t, set -o
functrace, and set -T are not available in bash prior to
version 3.0.

583

A bash Debugger
In this section we'll develop a very basic debugger for
bash.[10] Most debuggers have numerous sophisticated
features that help a programmer in dissecting a program,
but just about all of them include the ability to step
through a running program, stop it at selected places, and
examine the values of variables. These simple features
are what we will concentrate on providing in our
debugger. Specifically, we'll provide the ability to:

• Specify places in the program at which to stop
execution. These are called breakpoints.

• Execute a specified number of statements in the
program. This is called stepping.

• Examine and change the state of the program
during its execution. This includes being able to
print out the values of variables and change them
when the program is stopped at a breakpoint or
after stepping.

• Print out the source code we are debugging along
with indications of where breakpoints are and
what line in the program we are currently
executing.

584

• Provide the debugging capability without having
to change the original source code of the program
we wish to debug in any way.

As you will see, the capability to do all of these things
(and more) is easily provided by the constructs and
methods we have seen in previous chapters.

Structure of the Debugger

The bashdb debugger works by taking a shell script and
turning it into a debugger for itself. It does this by
concatenating debugger functionality and the target
script, which we'll call the guinea pig script, and storing it
in another file that then gets executed. The process is
transparent to users—they will be unaware that the code
that is executing is actually a modified copy of their
script.

The bash debugger has three main sections: the driver,
the preamble, and the debugger functions.

The driver script

The driver script is responsible for setting everything up.
It is a script called bashdb and looks like this:

bashdb - a bash debugger
Driver Script: concatenates the preamble and the target script

585

and then executes the new script.

echo 'bash Debugger version 1.0'

_dbname=${0##*/}

if (($# < 1)) ; then
echo "$_dbname: Usage: $_dbname filename" >&2
exit 1

fi

_guineapig=$1

if [! -r $1]; then
echo "$_dbname: Cannot read file '$_guineapig'." >&2
exit 1

fi

shift

_tmpdir=/tmp
_libdir=.
_debugfile=$_tmpdir/bashdb.$$ # temporary file for script that is

being debugged
cat $_libdir/bashdb.pre $_guineapig > $_debugfile
exec bash $_debugfile $_guineapig $_tmpdir $_libdir "$@"

bashdb takes as the first argument the name of guinea pig
file. Any subsequent arguments are passed on to the
guinea pig as its positional parameters.

If no arguments are given, bashdb prints out a usage line
and exits with an error status. Otherwise, it checks to see
if the file exists. If it doesn't, exist then bashdb prints a
message and exits with an error status. If all is in order,
bashdb constructs a temporary file in the way we saw in

586

the last chapter. If you don't have (or don't have access to)
/tmp on your system, then you can substitute a different
directory for _tmpdir.[11] The variable _libdir is the
name of the directory that contains files needed by
bashdb (bashdb.pre and bashdb.fns). If you are installing
bashdb on your system for everyone to use, you might
want to place them in /usr/lib.

The cat statement builds the modified copy of the guinea
pig file: it contains the script found in bashdb.pre (which
we'll look at shortly) followed by a copy of the guinea
pig.

587

exec

The last line runs the newly created script with exec, a
statement we haven't discussed yet. We've chosen to wait
until now to introduce it because—as we think you'll
agree—it can be dangerous. exec takes its arguments as a
command line and runs the command in place of the
current program, in the same process. In other words, a
shell that runs exec will terminate immediately and be
replaced by exec's arguments.[12]

In our script, exec just runs the newly constructed shell
script, i.e., the guinea pig with its debugger, in another
shell. It passes the new script three arguments—the name
of the original guinea pig file ($_guineapig), the name of
the temporary directory ($_tmpdir), and the name of the
library directory ($_libdir)—followed by the user's
positional parameters, if any.

588

The Preamble

Now we'll look at the code that gets prepended to the
guinea pig script; we call this the preamble. It's kept in
the file bashdb.pre and looks like this:

bashdb preamble
This file gets prepended to the shell script being debugged.
Arguments:
$1 = the name of the original guinea pig script
$2 = the directory where temporary files are stored
$3 = the directory where bashdb.pre and bashdb.fns are stored

_debugfile=$0
_guineapig=$1

_tmpdir=$2
_libdir=$3

shift 3

source $_libdir/bashdb.fns
_linebp=
let _trace=0
let _i=1

while read; do
_lines[$_i]=$REPLY
let _i=$_i+1

done < $_guineapig

trap _cleanup EXIT

589

let _steps=1
trap '_steptrap $(($LINENO -29))' DEBUG

The first few lines save the three fixed arguments in
variables and shift them out of the way, so that the
positional parameters (if any) are those that the user
supplied on the command line as arguments to the guinea
pig. Then, the preamble reads in another file, bashdb.fns,
which contains all of the functions necessary for the
operation of the debugger itself. We put this code in a
separate file to minimize the size of the temporary file.
We'll examine bashdb.fns shortly.

Next, bashdb.pre initializes a breakpoint array to empty
and execution tracing to off (see the following
discussion), then reads the original guinea pig script into
an array of lines. We need the source lines from the
original script for two reasons: to allow the debugger to
print out the script showing where the breakpoints are,
and to print out the lines of code as they execute if tracing
is turned on. You'll notice that we assign the script lines
to _lines from the environment variable $REPLY rather
than reading them into the array directly. This is because
$REPLY preserves any leading whitespace in the lines,
i.e., it preserves the indentation and layout of the original
script.

The last five lines of code set up the conditions necessary
for the debugger to begin working. The first trap
command sets up a clean-up routine that runs when the
fake signal EXIT occurs. The clean-up routine, normally
called when the debugger and guinea pig script finish,

590

just erases the temporary file. The next line sets the
variable _steps to 1 so that when the debugger is first
entered, it will stop after the first line.

The next line sets up the routine _steptrap to run when
the fake signal DEBUG occurs.

The built-in variable LINENO, which we saw earlier in
the chapter, is used to provide line numbers in the
debugger. However, if we just used LINENO as is, we'd
get line numbers above 30 because LINENO would be
including the lines in the preamble. To get around this,
we can pass LINENO minus the number of lines in the
preamble to the trap.[13]

591

Debugger Functions

The function _steptrap is the entry point into the
debugger; it is defined in the file bashdb.fns. Here is
_steptrap:

After each line of the test script is executed the shell traps to
this function.

function _steptrap
{

_curline=$1 # the number of the line that just ran

(($_trace)) && _msg "$PS4 line $_curline: ${_lines[$_curline]}"

if (($_steps >= 0)); then
let _steps="$_steps - 1"

fi

First check to see if a line number breakpoint was reached.
If it was, then enter the debugger.
if _at_linenumbp ; then

_msg "Reached breakpoint at line $_curline"
_cmdloop

It wasn't, so check whether a break condition exists and is true.
If it is, then enter the debugger.
elif [-n "$_brcond"] && eval $_brcond; then

_msg "Break condition $_brcond true at line $_curline"
_cmdloop

It wasn't, so check if we are in step mode and the number of steps
is up. If it is then enter the debugger.

592

elif (($_steps == 0)); then
_msg "Stopped at line $_curline"
_cmdloop

fi
}

_steptrap starts by setting _curline to the number of the
guinea pig line that just ran. If execution tracing is on, it
prints the PS4 execution trace prompt (like the shell's
xtrace mode), line number, and line of code itself. It then
decrements the number of steps if the number of steps
still left is greater than or equal to zero.

Then it does one of two things: it enters the debugger via
_cmdloop, or it returns so the shell can execute the next
statement. It chooses the former if a breakpoint or break
condition has been reached, or if the user stepped into this
statement.

Commands

We will explain shortly how _steptrap determines these
things; now we will look at _cmdloop. It's a simple
combination of the case statements we saw in Chapter 5,
and the calculator loop we saw in the previous chapter.

The Debugger Command Loop

function _cmdloop {
local cmd args

while read -e -p "bashdb> " cmd args; do
case $cmd in

593

\? | h) _menu ;; # print command menu
bc) _setbc $args ;; # set a break condition
bp) _setbp $args ;; # set a breakpoint at the given

line
cb) _clearbp $args ;; # clear one or all breakpoints
ds) _displayscript ;; # list the script and show the

breakpoints
g) return ;; # "go": start/resume execution of

the script
q) exit ;; # quit

s) let _steps=${args:-1} # single step N times
(default = 1)

return ;;
x) _xtrace ;; # toggle execution trace
!*) eval ${cmd#!} $args ;; # pass to the shell
*) _msg "Invalid command: '$cmd'" ;;

esac
done

}

At each iteration, _cmdloop prints a prompt, reads a
command, and processes it. We use read -e so that the
user can take advantage of the readline command-line
editing. The commands are all one- or two-letter
abbreviations; quick for typing, but terse in the UNIX
style.[14]

Table 9-3 summarizes the debugger commands.

Table 9-3. bashdb commands

594

Command Action

bp N Set breakpoint at line N

bp List breakpoints and break condition

bc string Set break condition to string

bc Clear break condition

cb N Clear breakpoint at line N

cb Clear all breakpoints

ds Display the test script and breakpoints

g Start/resume execution

s [N] Execute N statements (default 1)

595

Command Action

x Toggle execution trace on/off

h, ? Print the help menu

! string Pass string to a shell

q Quit

Before looking at the individual commands, it is
important that you understand how control passes through
_steptrap, the command loop, and the guinea pig.

_steptrap runs after every statement in the guinea pig as
a result of the trap on DEBUG in the preamble. If a
breakpoint has been reached or the user previously typed
in a step command(s), _steptrap calls the command loop.
In doing so, it effectively "interrupts" the shell that is
running the guinea pig to hand control over to the user.

The user can invoke debugger commands as well as shell
commands that run in the same shell as the guinea pig.
This means that you can use shell commands to check
values of variables, signal traps, and any other

596

information local to the script being debugged. The
command loop continues to run, and the user stays in
control, until he types g, q, or s. We'll now look in detail
at what happens in each of these cases.

Typing g has the effect of running the guinea pig
uninterrupted until it finishes or hits a breakpoint. It
simply exits the command loop and returns to _steptrap,
which exits as well. The shell then regains control and
runs the next statement in the guinea pig script. Another
DEBUG signal occurs and the shell traps to _steptrap
again. If there are no breakpoints then _steptrap will just
exit. This process will repeat until a breakpoint is reached
or the guinea pig finishes.

The q command calls the function _cleanup, which
erases the temporary file and exits the program.

597

Stepping

When the user types s, the command loop code sets the
variable _steps to the number of steps the user wants to
execute, i.e., to the argument given. Assume at first that
the user omits the argument, meaning that _steps is set to
1. Then the command loop exits and returns control to
_steptrap, which (as above) exits and hands control back
to the shell. The shell runs the next statement and returns
to _steptrap, which then decrements _steps to 0. Then
the second elif conditional becomes true because _steps
is 0 and prints a "stopped" message and then calls the
command loop.

Now assume that the user supplies an argument to s, say
3. _steps is set to 3. Then the following happens:

1. After the next statement runs, _steptrap is called
again. It enters the first if clause, since _steps is
greater than 0. _steptrap decrements _steps to 2
and exits, returning control to the shell.

2. This process repeats, another step in the guinea
pig is run, and _steps becomes 1.

3. A third statement is run and we're back in
_steptrap. _steps is decremented to 0, the
second elif clause is run, and _steptrap breaks
out to the command loop again.

598

The overall effect is that the three steps run and then the
debugger takes over again.

All of the other debugger commands cause the shell to
stay in the command loop, meaning that the user prolongs
the "interruption" of the shell.

599

Breakpoints

Now we'll examine the breakpoint-related commands and
the breakpoint mechanism in general. The bp command
calls the function _setbp, which can do two things,
depending on whether an argument is supplied or not.
Here is the code for _setbp:

Set a breakpoint at the given line number or list breakpoints
function _setbp
{

local i

if [-z "$1"]; then
_listbp

elif [$(echo $1 | grep '^[0-9]*')]; then
if [-n "${_lines[$1]}"]; then

_linebp=($(echo $((for i in ${_linebp[*]} $1; do
echo $i; done) | sort -n)))

_msg "Breakpoint set at line $1"
else

_msg "Breakpoints can only be set on non-blank lines"
fi

else
_msg "Please specify a numeric line number"

fi
}

If no argument is supplied, _setbp calls _listbp, which
prints the line numbers that have breakpoints set. If
anything other than a number is supplied as an argument,
an error message is printed and control returns to the
command loop. Providing a number as the argument

600

allows us to set a breakpoint; however, we have to do
another test before doing so.

What happens if the user decides to set a breakpoint at a
nonsensical point: a blank line, or at line 1,000 of a
10-line program? If the breakpoint is set well beyond the
end of the program, it will never be reached and will
cause no problem. If, however, a breakpoint is set at a
blank line, it will cause problems. The reason is that the
DEBUG trap only occurs after each executed simple
command in a script, not each line. Blank lines never
generate the DEBUG signal. The user could set a
breakpoint on a blank line, in which case continuing
execution with the g command would never break back
out to the debugger.

We can fix both of these problems by making sure that
breakpoints are set only on lines with text.[15] After
making the tests, we can add the breakpoint to the
breakpoint array, _linebp. This is a little more complex
than it sounds. In order to make the code in other sections
of the debugger simpler, we should maintain a sorted
array of breakpoints. To do this, we echo all of the line
numbers currently in the array, along with the new
number, in a subshell and pipe them into the UNIX sort
command. sort -n sorts a list into numerically ascending
order. The result of this is a list of ordered numbers which
we then assign back to the _linebp array with a
compound assignment.

601

To complement the user's ability to add breakpoints, we
also allow the user to delete them. The cb command
allows the user to clear single breakpoints or all
breakpoints, depending on whether a line number
argument is supplied or not. For example, cb 12 clears a
breakpoint at line 12 (if a breakpoint was set at that line).
cb on its own would clear all of the breakpoints that have
been set. It is useful to look briefly at how this works;
here is the code for the function that is called with the cb
command, _clearbp:

function _clearbp
{

local i

if [-z "$1"]; then
unset _linebp[*]
_msg "All breakpoints have been cleared"

elif [$(echo $1 | grep '^[0-9]*')]; then
_linebp=($(echo $(for i in ${_linebp[*]}; do

if (($1 != $i)); then echo $i; fi; done)))
_msg "Breakpoint cleared at line $1"

else
_msg "Please specify a numeric line number"

fi
}

The structure of the code is similar to that used for setting
the breakpoints. If no argument was supplied to the
command, the breakpoint array is unset, effectively
deleting all the breakpoints. If an argument was supplied
and is not a number, we print out an error message and
exit.

602

A numeric argument to the cb command means the code
has to search the list of breakpoints and delete the
specified one. We can easily make the deletion by
following a procedure similar to the one we used when
we added a breakpoint in _setbp. We execute a loop in a
subshell, printing out the line numbers in the breakpoints
list and ignoring any that match the provided argument.
The echoed values once again form a compound
statement, which can then be assigned to an array
variable.[16]

The function _at_linenumbp is called by _steptrap after
every statement; it checks whether the shell has arrived at
a line number breakpoint. The code for the function is:

See if this line number has a breakpoint
function _at_linenumbp
{

local i=0

if ["$_linebp"]; then
while (($i < ${#_linebp[@]})); do

if ((${_linebp[$i]} == $_curline)); then
return 0

fi
let i=$i+1

done
fi
return 1

}

The function simply loops through the breakpoint array
and checks the current line number against each one. If a
match is found, it returns true (i.e., returns 0). Otherwise,

603

it continues looping, looking for a match until the end of
the array is reached. It then returns false.

It is possible to find out exactly what line the debugger is
up to and where the breakpoints have been set in the
guinea pig by using the ds command. We'll see an
example of the output later, when we run a sample
bashdb debugging session. The code for this function is
fairly straightforward:

Print out the shell script and mark the location of breakpoints
and the current line
function _displayscript
{

local i=1 j=0 bp cl

(while (($i < ${#_lines[@]})); do
if [${_linebp[$j]}] && ((${_linebp[$j]} == $i)); then

bp='*'
let j=$j+1

else
bp=' '

fi

if (($_curline == $i)); then
cl=">"

else
cl=" "

fi

echo "$i:$bp $cl ${_lines[$i]}"
let i=$i+1

done
) | more

}

604

This function contains a subshell, the output of which is
piped to the UNIX more command. We have done this
for user-friendly reasons; a long script would scroll up the
screen quickly and the users may not have displays that
allow them to scroll back to previous pages of screen
output. more displays one screenful of output at a time.

The core of the subshell code loops through the lines of
the guinea pig script. It first tests to see if the line it is
about to display is in the array of breakpoints. If it is, a
breakpoint character (*) is set and the local variable j is
incremented. j was initialized to 0 at the beginning of the
function; it contains the current breakpoint that we are up
to. It should now be apparent why we went to the trouble
of sorting the breakpoints in _setbp: both the line
numbers and the breakpoint numbers increment
sequentially, and once we pass a line number that has a
breakpoint and find it in the breakpoint array, we know
that future breakpoints in the script must be further on in
the array. If the breakpoint array contained line numbers
in a random order, we'd have to search the entire array to
find out if a line number was in the array or not.

The core of the subshell code then checks to see if the
current line and the line it is about to display are the
same. If they are, a "current line" character (>) is set. The
current displayed line number (stored in i), breakpoint
character, current line character, and script line are then
printed out.

605

We think you'll agree that the added complexity in the
handling of breakpoints is well worth it. Being able to
display the script and the location of breakpoints is an
important feature in any debugger.

606

Break conditions

bashdb provides another method of breaking out of the
guinea pig script: the break condition. This is a string that
the user can specify that is evaluated as a command; if it
is true (i.e., returns exit status 0), the debugger enters the
command loop.

Since the break condition can be any line of shell code,
there's a lot of flexibility in what can be tested. For
example, you can break when a variable reaches a certain
value—e.g., (($x < 0))—or when a particular piece of
text has been written to a file (grep string file). You will
probably think of all kinds of uses for this feature.[17] To
set a break condition, type bc string. To remove it, type
bc without arguments—this installs the null string, which
is ignored.

_steptrap evaluates the break condition $_brcond only if
it's not null. If the break condition evaluates to 0, then the
if clause is true and, once again, _steptrap calls the
command loop.

607

Execution tracing

The final feature of the debugger is execution tracing,
available with the x command.

The function _xtrace "toggles" execution tracing simply
by assigning to the variable _trace the logical "not" of its
current value, so that it alternates between 0 (off) and 1
(on). The preamble initializes it to 0.

608

Debugger limitations

We have kept bashdb reasonably simple so that you can
see the fundamentals of building a shell script debugger.
Although it contains some useful features and is designed
to be a real tool, not just a scripting example, it has some
important limitations. Some are described in the list that
follows.

1. Debuggers tend to run programs slower than if
they were executed on their own. bashdb is no
exception. Depending upon the script you use it
on, you'll find the debugger runs everything
anywhere from 8 to 30 times more slowly. This
isn't so much of a problem if you are stepping
through a script in small increments, but bear it in
mind if you have, say, initialization code with
large looping constructs.

2. The debugger will not "step down" into shell
scripts that are called from the guinea pig. To do
this, you'd have to edit your guinea pig script and
change a call to scriptname to bashdb
scriptname.

3. Similarly, nested subshells are treated as one
gigantic statement; you cannot step down into
them at all.

609

4. The guinea pig itself should not trap on the fake
signals DEBUG and EXIT; otherwise the
debugger won't work.

5. Command error handling could be significantly
improved.

Many of these are not insurmountable and you can
experiment with solving them yourself; see the exercises
at the end of this chapter.

The debugger from an earlier version of this book helped
inspire a more comprehensive bash debugger maintained
by Rocky Bernstein, which you can find at the Bash
Debugger Project, http://bashdb.sourceforge.net/ .

610

A Sample bashdb Session

Now we'll show a transcript of an actual session with
bashdb, in which the guinea pig is the solution to Task
6-1, the script ndu. Here is the transcript of the debugging
session:

[bash]$ bashdb ndu
bash Debugger version 1.0
Stopped at line 0
bashdb> ds
1: for dir in ${*:-.}; do
2: if [-e $dir]; then
3: result=$(du -s $dir | cut -f 1)
4: let total=$result*1024
5:
6: echo -n "Total for $dir = $total bytes"
7:
8: if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11: echo " ($((total/1024)) Kb)"
12: fi
13: fi
14: done
bashdb> s
Stopped at line 2
bashdb> bp 4
Breakpoint set at line 4
bashdb> bp 8
Breakpoint set at line 8
bashdb> bp 11

611

Breakpoint set at line 11
bashdb> ds
1: for dir in ${*:-.}; do
2: > if [-e $dir]; then
3: result=$(du -s $dir | cut -f 1)
4:* let total=$result*1024
5:
6: echo -n "Total for $dir = $total bytes"
7:
8:* if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11:* echo " ($((total/1024)) Kb)"
12: fi
13: fi
14: done
bashdb> g
Reached breakpoint at line 4
bashdb> !echo $total
6840032
bashdb> cb 8
Breakpoint cleared at line 8
bashdb> ds
1: for dir in ${*:-.}; do
2: if [-e $dir]; then
3: result=$(du -s $dir | cut -f 1)
4:* > let total=$result*1024
5:
6: echo -n "Total for $dir = $total bytes"
7:
8: if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11:* echo " ($((total/1024)) Kb)"
12: fi
13: fi
14: done

612

bashdb> bp
Breakpoints at lines: 4 11
Break on condition:

bashdb> !total=5600
bashdb> g
Total for . = 5600 bytes (5 Kb)
Reached breakpoint at line 11
bashdb> cb
All breakpoints have been cleared
bashdb> ds
1: for dir in ${*:-.}; do
2: if [-e $dir]; then
3: result=$(du -s $dir | cut -f 1)
4: let total=$result*1024
5:
6: echo -n "Total for $dir = $total bytes"
7:
8: if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11: > echo " ($((total/1024)) Kb)"
12: fi
13: fi
14: done
bashdb> g
[bash]$

First, we display the script with ds and then perform a
step, taking execution to line 2 of ndu. We then set
breakpoints at lines 4, 8, and 11 and display the script
again. This time the breakpoints are clearly marked by
asterisks (*). The right angle bracket (>) indicates that
line 2 was the most recent line executed.

613

Next, we continue execution of the script that breaks at
line 4. We print out the value of total now and decide to
clear the breakpoint at line 8. Displaying the script
confirms that the breakpoint at line 8 is indeed gone. We
can also use the bp command, and it too shows that the
only breakpoints set are at lines 4 and 11.

At this stage we might decide that we want to check the
logic of the if branch at line 11. This requires that $total
be greater than or equal to 1,024, but less than 1,048,576.
As we saw previously, $total is very large, so we set its
value to 5,600 so that it will execute the second part of
the if and continue execution. The script enters that
section of the if correctly, prints out the value, and stops
at the breakpoint.

To finish off, we clear the breakpoints, display the script
again, and then continue execution, which exits the script.

614

Exercises

We'll conclude this chapter with some suggested
enhancements to our simple debugger and a complete
listing of the debugger command source code.

1. Improve command error handling in these ways:

1. Check that the arguments to s are valid
numbers and print an appropriate error
message if they aren't.

2. Check that a breakpoint actually exists
before clearing it and warn the user if the
line doesn't have a breakpoint.

3. Any other error handling that you can
think of.

2. Add code to remove duplicate breakpoints (more
than one breakpoint on one line).

3. Enhance the cb command so that the user can
specify more than one breakpoint to be cleared at
a time.

4. Implement an option that causes a break into the
debugger whenever a command exits with
non-zero status:

615

1. Implement it as the command-line option
-e.

2. Implement it as the debugger command e
to toggle it on and off. (Hint: when you
enter _steptrap, $? is still the exit status
of the last command that ran.)

5. Implement a command that prints out the status
of the debugger: whether execution trace is on/
off, error exit is on/off, and the number of the last
line to be executed. In addition, move the
functionality for displaying the breakpoints from
bp to the new option.

6. Add support for multiple break conditions, so
that bashdb stops execution whenever one of
them becomes true and prints a message
indicating which one became true. Do this by
storing the break conditions in an array. Try to
make this as efficient as possible, since the
checking will take place after every statement.

7. Add the ability to watch variables.

1. Add a command aw that takes a variable
name as an argument and adds it to a list
of variables to watch. Any watched
variables are printed out when execution
trace is toggled on.

616

2. Add another command cw that, without
an argument, removes all of the variables
from the watch list. With an argument, it
removes the specified variable.

8. Although placing an underscore at the start of the
debugger identifiers will avoid name clashes in
most cases, think of ways to automatically detect
name clashes with the guinea pig script and how
to get around this problem. (Hint: you could
rename the clashing names in the guinea pig
script at the point where it gets combined with
the preamble and placed in the temporary file.)

9. Add any other features you can think of.

Finally, here is a complete source listing of the debugger
function file bashdb.fns:

After each line of the test script is executed the shell traps to
this function.

function _steptrap
{

_curline=$1 # the number of the line that just ran

(($_trace)) && _msg "$PS4 line $_curline: ${_lines[$_curline]}"

if (($_steps >= 0)); then
let _steps="$_steps - 1"

fi

First check to see if a line number breakpoint was reached.
If it was, then enter the debugger.

617

if _at_linenumbp ; then
_msg "Reached breakpoint at line $_curline"
_cmdloop

It wasn't, so check whether a break condition exists and is true.
If it is, then enter the debugger
elif [-n "$_brcond"] && eval $_brcond; then

_msg "Break condition $_brcond true at line $_curline"
_cmdloop

It wasn't, so check if we are in step mode and the number of
steps is up. If it is, then enter the debugger.
elif (($_steps == 0)); then

_msg "Stopped at line $_curline"
_cmdloop

fi
}

The Debugger Command Loop

function _cmdloop {
local cmd args

while read -e -p "bashdb> " cmd args; do
case $cmd in

\? | h) _menu ;; # print command menu
bc) _setbc $args ;; # set a break condition
bp) _setbp $args ;; # set a breakpoint at the given line
cb) _clearbp $args ;; # clear one or all breakpoints
ds) _displayscript ;; # list the script and show the

breakpoints
g) return ;; # "go": start/resume execution of

the script
q) exit ;; # quit
s) let _steps=${args:-1} # single step N times (default = 1)

return ;;

618

x) _xtrace ;; # toggle execution trace
*) eval ${cmd#!} $args ;; # pass to the shell
*) _msg "Invalid command: '$cmd'" ;;

esac
done

}

See if this line number has a breakpoint
function _at_linenumbp
{

local i=0

Loop through the breakpoints array and check to see if any of
them match the current line number. If they do return true (0)
otherwise return false.

if ["$_linebp"]; then
while (($i < ${#_linebp[@]})); do

if ((${_linebp[$i]} == $_curline)); then
return 0

fi
let i=$i+1

done
fi
return 1

}

Set a breakpoint at the given line number or list breakpoints
function _setbp
{

local i

If there are no arguments call the breakpoint list function.
Otherwise check to see if the argument was a positive number.
If it wasn't then print an error message. If it was then check

619

to see if the line number contains text. If it doesn't then
print an error message. If it does then echo the current
breakpoints and the new addition and pipe them to "sort" and
assign the result back to the list of breakpoints. This results
in keeping the breakpoints in numerical sorted order.

Note that we can remove duplicate breakpoints here by using
the -u option to sort which uniquifies the list.

if [-z "$1"]; then
_listbp

elif [$(echo $1 | grep '^[0-9]*')]; then
if [-n "${_lines[$1]}"]; then

_linebp=($(echo $((for i in ${_linebp[*]} $1; do
echo $i; done) | sort -n)))

_msg "Breakpoint set at line $1"
else

_msg "Breakpoints can only be set on non-blank lines"
fi

else
_msg "Please specify a numeric line number"

fi
}

List breakpoints and break conditions
function _listbp
{

if [-n "$_linebp"]; then
_msg "Breakpoints at lines: ${_linebp[*]}"

else
_msg "No breakpoints have been set"

fi

_msg "Break on condition:"
_msg "$_brcond"

}

620

Clear individual or all breakpoints
function _clearbp
{

local i bps

If there are no arguments, then delete all the breakpoints.
Otherwise, check to see if the argument was a positive number.
If it wasn't, then print an error message. If it was, then
echo all of the current breakpoints except the passed one
and assign them to a local variable. (We need to do this because
assigning them back to _linebp would keep the array at the same
size and just move the values "back" one place, resulting in a
duplicate value). Then destroy the old array and assign the
elements of the local array, so we effectively recreate it,
minus the passed breakpoint.

if [-z "$1"]; then
unset _linebp[*]
_msg "All breakpoints have been cleared"

elif [$(echo $1 | grep '^[0-9]*')]; then
bps=($(echo $(for i in ${_linebp[*]}; do

if (($1 != $i)); then echo $i; fi; done)))
unset _linebp[*]
_linebp=(${bps[*]})
_msg "Breakpoint cleared at line $1"

else
_msg "Please specify a numeric line number"

fi
}

Set or clear a break condition
function _setbc
{

if [-n "$*"]; then
_brcond=$args

621

_msg "Break when true: $_brcond"
else

_brcond=
_msg "Break condition cleared"

fi
}

Print out the shell script and mark the location of breakpoints
and the current line

function _displayscript
{

local i=1 j=0 bp cl

(while (($i < ${#_lines[@]})); do
if [${_linebp[$j]}] && ((${_linebp[$j]} == $i)); then

bp='*'
let j=$j+1

else
bp=' '

fi
if (($_curline == $i)); then

cl=">"
else

cl=" "
fi
echo "$i:$bp $cl ${_lines[$i]}"
let i=$i+1

done
) | more

}

Toggle execution trace on/off
function _xtrace
{

622

let _trace="! $_trace"
_msg "Execution trace "
if (($_trace)); then

_msg "on"
else

_msg "off"
fi

}

Print the passed arguments to Standard Error
function _msg
{

echo -e "$@" >&2
}

Print command menu
function _menu {

_msg 'bashdb commands:
bp N set breakpoint at line N
bp list breakpoints and break condition
bc string set break condition to string
bc clear break condition
cb N clear breakpoint at line N
cb clear all breakpoints
ds displays the test script and breakpoints
g start/resume execution
s [N] execute N statements (default 1)
x toggle execution trace on/off
h, ? print this menu
! string passes string to a shell
q quit'

}

Erase the temporary file before exiting

623

function _cleanup
{

rm $_debugfile 2>/dev/null
}

[10] Unfortunately, the debugger will not work with
versions of bash prior to 2.0, because they do not
implement the DEBUG signal.

[11] All function names and variables (except those local
to functions) in bashdb have names beginning with an
underscore (_), to minimize the possibility of clashes with
names in the guinea pig script.

[12] exec can also be used with an I/O redirector only; this
makes the redirector take effect for the remainder of the
script or login session. For example, the line exec
2>errlog at the top of a script directs standard error to the
file errlog for the rest of the script.

[13] If you are typing or scanning in the preamble code
from this book, make sure that the last line in the file is
the call to set the trap, i.e., no blank lines should appear
after the call to trap.

[14] There is nothing to stop you from changing the
commands to something you find easier to remember.
There is no "official" bash debugger, so feel free to
change the debugger to suit your needs.

624

[15] This isn't a complete solution. Certain other lines
(e.g., comments) will also be ignored by the DEBUG
trap. See the list of limitations and the exercises at the end
of this chapter.

[16] bash versions 2.01 and earlier have a bug in assigning
arrays to themselves that prevents the code for setbp and
clearbp from working. In each case, you can get around
this bug by assigning _linebp to a local variable first,
unsetting it, and then assigning the local variable back to
it. Better yet, update to a more recent version of bash.

[17] Bear in mind that if your break condition sends
anything to standard output or standard error, you will see
it after every statement executed. Also, make sure your
break condition doesn't take a long time to run; otherwise
your script will run very, very slowly.

625

Chapter 10. bash
Administration
There are two areas in which system administrators use
the shell as part of their job: setting up a generic
environment for users and for system security. In this
chapter, we'll discuss bash's features that relate to these
tasks. We assume that you already know the basics of
UNIX system administration.[1]

Installing bash as the
Standard Shell
As a prelude to system-wide customization, we want to
emphasize that bash can be installed as if it were the
standard Bourne shell, /bin/sh. Indeed, some systems,
such as Linux, come with bash installed instead of the
Bourne shell.

If you want to do this with your system, you can just save
the original Bourne shell to another filename (in case
someone needs to use it) and either install bash as sh in
the /bin directory, or better yet install bash in the /bin
directory and create a symbolic link from /bin/sh to /bin/
bash using the command ln -s /bin/bash /bin/sh. The
reason we think that the second option is better is because

626

bash changes its behavior slightly if started as sh, as we
will see shortly.

As detailed in Appendix A, bash is backward-compatible
with the Bourne shell, except that it doesn't support ^ as a
synonym for the pipe character (|). Unless you have an
ancient UNIX system, or you have some very, very old
shell scripts, you needn't worry about this.

But if you want to be absolutely sure, simply search
through all shell scripts in all directories in your PATH.
An easy way to perform the search is to use the file
command, which we saw in Chapter 5 and Chapter 9. file
prints "executable shell script" when given the name of
one.[2] Here is a script that looks for ^ in shell scripts in
every directory in your PATH:

IFS=:
for d in $PATH; do

echo checking $d:
cd $d
scripts=$(file * | grep 'shell script' | cut -d: -f1)
for f in $scripts; do

grep '\^' $f /dev/null
done

done

The first line of this script makes it possible to use
$PATH as an item list in the for loop. For each directory,
it cds there and finds all shell scripts by piping the file
command into grep and then, to extract the filename only,
into cut. Then for each shell script, it searches for the ^
character.[3]

627

If you run this script, you will probably find several
occurrences of ^—but these carets should be used within
regular expressions in grep, sed, or awk commands, not
as pipe characters. As long as carets are never used as
pipes, it is safe for you to install bash as /bin/sh.

As we mentioned earlier, if bash is started as sh (because
the executable file has been renamed sh or there is a link
from sh to bash) its startup behavior will change slightly
to mimic the Bourne shell as closely as possible. For
login shells it only attempts to read /etc/profile and
~/.profile, ignoring any other startup files like
~/.bash_profile. For interactive shells it won't read the
initialization file ~/.bashrc.[4]

POSIX Mode

Besides its native operating mode, bash can also be
switched into POSIX mode. The POSIX (Portable
Operating System Interface) standard, described in detail
in Appendix A, defines guidelines for standardizing
UNIX. One part of the POSIX standard covers shells.

bash is nearly 100% POSIX-compliant in its native mode.
If you want strict POSIX adherence, you can either start
bash with the —posix option, or set it from within the
shell with set -o posix.

Only in very rare circumstances would you ever have to
use POSIX mode. The differences, outlined in Appendix

628

A, are small and are mostly concerned with the command
lookup order and how functions are handled. Most bash
users should be able to get through life without ever
having to use this option.

629

Command-Line Options

bash has several command-line options that change the
behavior of and pass information to the shell. The options
fall into two sets: single character options, like we've seen
in previous chapters of this book, and multicharacter
options, which are a relatively recent improvement to
UNIX utilities.[5] Table 10-1 lists all of the options.[6]

Table 10-1. bash command-line options

Option Meaning

-c string

Commands are read from string, if
present. Any arguments after string
are interpreted as positional
parameters, starting with $0.

-D

A list of all double-quoted strings
preceded by $ is printed on the
standard ouput. These are the
strings that are subject to language
translation when the current locale

630

Option Meaning

is not C or POSIX. This also turns
on the -n option.

-i

Interactive shell. Ignores signals
TERM, INT, and QUIT. With job
control in effect, TTIN, TTOU,
and TSTP are also ignored.

-l Makes bash act as if invoked as a
login shell.

-o option Takes the same arguments as set
-o.

-O, +O
shopt-option

shopt-option is one of the shell
options accepted by the shopt
builtin. If shopt-option is present,
-O sets the value of that option;
+O unsets it. If shopt-option is not
supplied, the names and values of
the shell options accepted by shopt
are printed on the standard output.

631

Option Meaning

If the invocation option is +O, the
output is displayed in a format that
may be reused as input.

-s

Reads commands from the
standard input. If an argument is
given to bash, this flag takes
precedence (i.e., the argument
won't be treated as a script name
and standard input will be read).

-r Restricted shell. See the Section
10.3.1 later in this chapter.

-v Prints shell input lines as they're
read.

-

Signals the end of options and
disables further option processing.
Any options after this are treated as
filenames and arguments. — is
synonymous with -.

632

Option Meaning

—debugger

Arranges for the debugger profile
to be executed before the shell
starts. Turns on extended
debugging mode and shell function
tracing.[7]

—dump-strings Does the same as -D.

—dump-po-strings
Does the same as -D but the output
is in the GNU gettext po (portable
object) file format.

—help Displays a usage message and
exits.

—login Makes bash act as if invoked as a
login shell. Same as -l.

—noediting
Does not use the GNU readline
library to read command lines if
interactive.

633

Option Meaning

—noprofile
Does not read the startup file /etc/
profile or any of the personal
initialization files.

—norc

Does not read the initialization file
~/.bashrc if the shell is interactive.
This is on by default if the shell is
invoked as sh.

—posix

Changes the behavior of bash to
follow the POSIX guidelines more
closely where the default operation
of bash is different.

—quiet Shows no information on shell
startup. This is the default.

—rcfile file,
—init-file file

Executes commands read from file
instead of from the initialization
file ~/.bashrc if the shell is
interactive.

634

Option Meaning

—verbose Equivalent to -v.

—version Shows the version number of this
instance of bash and then exits.

[7] Only available in bash version 3.0 and later.

The multicharacter options have to appear on the
command line before the single-character options. In
addition to these, any set option can be used on the
command line. Like shell built-ins, using a + instead of -
turns an option off.

Of these options, the most useful are -i (interactive), -r
(restricted), -s (read from standard input), -p (privileged),
and -m (enable job control). Login shells are usually run
with the -i, -s, and -m flags. We'll look at restricted and
privileged modes later in this chapter.

[1] A good source of information on system
administration is Essential System Administration by
Æleen Frisch (O'Reilly).

635

[2] The exact message varies from system to system;
make sure that yours prints this message when given the
name of a shell script. If not, just substitute the message
your file command prints for "shell script" in the
following code.

[3] The inclusion of /dev/null in the grep command is a
kludge that forces grep to print the names of files that
contain a match, even if there is only one such file in a
given directory.

[4] bash also enters POSIX mode when started as sh.
Versions of bash prior to 2.0 don't—POSIX mode has to
be explicitly set with the —posix command-line option.

[5] Multicharacter options are far more readable and
easier to remember than the old, and usually cryptic,
single character options. All of the GNU utilities have
multicharacter options, but many applications and utilities
(certainly those on old UNIX systems) allow only
single-character options.

[6] See Appendix B for a list of options for versions of
bash prior to 2.0.

636

Environment
Customization
Like the Bourne shell, bash uses the file /etc/profile for
system-wide customization. When a user logs in, the shell
reads and runs /etc/profile before running the user's
.bash_profile.

We won't cover all the possible commands you might
want to put in /etc/profile. But bash has a few unique
features that are particularly relevant to system-wide
customization; we'll discuss them here.

We'll start with two built-in commands that you can use
in /etc/profile to tailor your users' environments and
constrain their use of system resources. Users can also
use these commands in their .bash_profile, or at any other
time, to override the default settings.

umask

umask, like the same command in most other shells, lets
you specify the default permissions that files have when
users create them. It takes the same types of arguments
that the chmod command does, i.e., absolute (octal
numbers) or symbolic permission values.

637

The umask contains the permissions that are turned off
by default whenever a process creates a file, regardless of
what permission the process specifies.[8]

We'll use octal notation to show how this works. As you
probably know, the digits in a permission number stand
(left to right) for the permissions of the owner, owner's
group, and all other users, respectively. Each digit, in
turn, consists of three bits, which specify read, write, and
execute permissions from left to right. (If a file is a
directory, the "execute" permission becomes "search"
permission, i.e., permission to cd to it, list its files, etc.)

For example, the octal number 640 equals the binary
number 110 100 000. If a file has this permission, then its
owner can read and write it; users in the owner's group
can only read it; everyone else has no permission on it. A
file with permission 755 gives its owner the right to read,
write, and execute it and everyone else the right to read
and execute (but not write).

022 is a common umask value. This implies that when a
file is created, the "most" permission it could possibly
have is 755—which is the usual permission of an
executable that a compiler might create. A text editor, on
the other hand, might create a file with 666 permission
(read and write for everyone), but the umask forces it to
be 644 instead.

638

ulimit

The ulimit command was originally used to specify the
limit on file creation size. But bash's version has options
that let you put limits on several different system
resources. Table 10-2 lists the options.

Table 10-2. ulimit resource options

Option Resource limited

-a All limits (for printing values only)

-c Core file size (1 Kb blocks)

-d Process data segment (Kb)

-f File size (1 Kb blocks)

-l Maximum size of a process that can be locked
in memory (Kb)[9]

639

Option Resource limited

-m Maximum resident set size

-n File descriptors

-p Pipe size (512 byte blocks)

-s Process stack segment (Kb)

-t Process CPU time (seconds)

-u Maximum number of processes available to a
user

-v Virtual memory (Kb)

[9] Not available in versions of bash prior to 2.0.

640

Each takes a numerical argument that specifies the limit
in units shown in the table. You can also give the
argument "unlimited" (which may actually mean some
physical limit), "hard" and "soft", which refer to the
current hard and soft limits (see below), or you can omit
the argument, in which case it will print the current limit.
ulimit -a prints limits (or "unlimited") of all types.[10]

You can specify only one type of resource at a time. If
you don't specify any option, -f is assumed.

Some of these options depend on operating system
capabilities that don't exist in older UNIX versions. In
particular, some older versions have a fixed limit of 20
file descriptors per process (making -n irrelevant), and
some don't support virtual memory (making -v
irrelevant).

The -d and -s options have to do with dynamic memory
allocation, i.e., memory for which a process asks the
operating system at runtime. It's not necessary for casual
users to limit these, though software developers may want
to do so to prevent buggy programs from trying to
allocate endless amounts of memory due to infinite loops.

The -v and -m options are similar; -v puts a limit on all
uses of memory, and -m limits the amount of physical
memory that a process is allowed to use. You don't need
these unless your system has severe memory constraints
or you want to limit process size to avoid thrashing.

641

The -u option is another option which is useful if you
have system memory constraints or you wish just wish to
stop individual users from hogging the system resources.

You may want to specify limits on file size (-f and -c) if
you have constraints on disk space. Sometimes users
actually mean to create huge files, but more often than
not, a huge file is the result of a buggy program that goes
into an infinite loop. Software developers who use
debuggers like sdb, dbx, and gdb should not limit core file
size, because core dumps are necessary for debugging.

The -t option is another possible guard against infinite
loops. However, a program that is in an infinite loop but
isn't allocating memory or writing files is not particularly
dangerous; it's better to leave this unlimited and just let
the user kill the offending program.

In addition to the types of resources you can limit, ulimit
lets you specify hard or soft limits. Hard limits can be
lowered by any user but only raised by the super user
(root); users can lower soft limits and raise them—but
only as high as the hard limit for that resource.

If you give -H along with one (or more) of the options
above, ulimit will set hard limits; -S sets soft limits.
Without either of these, ulimit sets the hard and soft
limit. For example, the following commands set the soft
limit on file descriptors to 64 and the hard limit to
unlimited:

642

ulimit -Sn 64
ulimit -Hn unlimited

When ulimit prints current limits, it prints soft limits
unless you specify -H.

643

Types of Global
Customization

The best possible approach to globally available
customization would be a system-wide environment file
that is separate from each user's environment file—just
like /etc/profile is separate from each user's .bash_profile.
Unfortunately, bash doesn't have this feature.

Nevertheless, the shell gives you a few ways to set up
customizations that are available to all users at all times.
Environment variables are the most obvious; your /etc/
profile file will undoubtedly contain definitions for
several of them, including PATH and TERM.

The variable TMOUT is useful when your system
supports dialup lines. Set it to a number N, and if a user
doesn't enter a command within N seconds after the shell
last issued a prompt, the shell will terminate. This feature
is helpful in preventing people from "hogging" the dialup
lines.

You may want to include some more complex
customizations involving environment variables, such as
the prompt string PS1 containing the current directory (as
seen in Chapter 4).

644

You can also turn on options, such as emacs or vi editing
modes, or noclobber to protect against inadvertent file
overwriting. Any shell scripts you have written for
general use also contribute to customization.

Unfortunately, it's not possible to create a global alias.
You can define aliases in /etc/profile, but there is no way
to make them part of the environment so that their
definitions will propagate to subshells. (In contrast, users
can define global aliases by putting their definitions in
~/.bashrc.)

However, you can set up global functions. These are an
excellent way to customize your system's environment,
because functions are part of the shell, not separate
processes.

[8] If you are comfortable with Boolean logic, think of the
umask as a number that the operating system logically
ANDs with the permission given by the creating process.

[10] The "hard" and "soft" arguments are not available in
bash prior to version 2.05a.

645

System Security
Features
UNIX security is a problem of legendary notoriety. Just
about every aspect of a UNIX system has some security
issue associated with it, and it's usually the system
administrator's job to worry about this issue.

bash has two features that help solve this problem: the
restricted shell, which is intentionally "brain damaged,"
and privileged mode, which is used with shell scripts that
run as if the user were root.

Restricted Shell

The restricted shell is designed to put the user into an
environment where her ability to move around and write
files is severely limited. It's usually used for "guest"
accounts.[11] You can make a user's login shell restricted
by putting rbash in the user's /etc/passwd entry.[12]

The specific constraints imposed by the restricted shell
disallow the user from doing the following:

• Changing working directories: cd is inoperative.
If you try to use it, you will get the error message
bash: cd: restricted.

646

• Redirecting output to a file: the redirectors >, >|,
<>, and >> are not allowed.

• Assigning a new value to the environment
variables ENV, BASH_ENV, SHELL, or
PATH.

• Specifying any commands with slashes (/) in
them. The shell will treat files outside of the
current directory as "not found."

• Using the exec built-in.

• Specifying a filename containing a / as an
argument to the . built-in command.

• Importing function definitions from the shell
environment at startup.

• Adding or deleting built-in commands with the -f
and -d options to the enable built-in command.

• Specifying the -p option to the builtin command.

• Turning off restricted mode with set +r.

These restrictions go into effect after the user's
.bash_profile and environment files are run. In addition, it
is wise to change the owner of the users' .bash_profile
and .bashrc to root, and make these files read-only. The
users' home directory should also be made read-only.

647

This means that the restricted shell user's entire
environment is set up in /etc/profile and .bash_profile.
Since the user can't access /etc/profile and can't overwrite
.bash_profile, this lets the system administrator configure
the environment as he sees fit.

Two common ways of setting up such environments are
to set up a directory of "safe" commands and have that
directory be the only one in PATH, and to set up a
command menu from which the user can't escape without
exiting the shell.

648

A System Break-In Scenario

Before we explain the other security features, here is
some background information on system security that
should help you understand why they are necessary.

Many problems with UNIX security hinge on a UNIX file
attribute called the suid (set user ID) bit. This is like a
permission bit (see umask earlier in this chapter): when
an executable file has it turned on, the file runs with an
effective user ID equal to the owner of the file, which is
usually root. The effective user ID is distinct from the
real user ID of the process.

This feature lets administrators write scripts that do
certain things that require root privilege (e.g., configure
printers) in a controlled way. To set a file's suid bit, the
superuser can type chmod 4755 filename; the 4 is the
suid bit.

Modern system administration wisdom says that creating
suid shell scripts is a very, very bad idea.[13] This has
been especially true under the C shell, because its .cshrc
environment file introduces numerous opportunities for
break-ins. bash's environment file feature creates similar
security holes, although the security feature we'll see
shortly make this problem less severe.

649

We'll show why it's dangerous to set a script's suid bit.
Recall that in Chapter 3, we mentioned that it's not a good
idea to put your personal bin directory at the front of your
PATH. Here is a scenario that shows how this placement
combines with suid shell scripts to form a security hole: a
variation of the infamous "Trojan horse" scheme. First,
the computer cracker has to find a user on the system
with an suid shell script. In addition, the user must have a
PATH with her personal bin directory listed before the
public bin directories, and the cracker must have write
permission on the user's personal bin directory.

Once the cracker finds a user with these requirements, he
follows these steps:

• Looks at the suid script and finds a common
utility that it calls. Let's say it's grep.

• Creates the Trojan horse, which is this case is a
shell script called grep in the user's personal bin
directory. The script looks like this:

cp /bin/bash filename
chown root
filename
chmod 4755
filename
/bin/grep "$@

rm ~/bin/grep

filename should be some unremarkable filename
in a directory with public read and execute
permission, such as /bin or /usr/bin. The file,

650

when created, will be that most heinous of
security holes: an suid interactive shell.

• Sits back and waits for the user to run the suid
shell script—which calls the Trojan horse, which
in turn creates the suid shell and then
self-destructs.

• Runs the suid shell and creates havoc.

651

Privileged Mode

The one way to protect against Trojan horses is privileged
mode. This is a set -o option (set -o privileged or set -p).

In privileged mode, when an suid bash shell script is
invoked, the shell does not run the user's environment
file—i.e., it doesn't expand the user's BASH_ENV
environment variable.

Since privileged mode is an option, it is possible to turn it
off with the command set +o privileged (or set +p). But
this doesn't help the potential system cracker: the shell
automatically changes its effective user ID to be the same
as the real user ID—i.e., if you turn off privileged mode,
you also turn off suid.

Privileged mode is an excellent security feature; it solves
a problem that originated when the environment file idea
first appeared in the C shell.

Nevertheless, we still strongly recommend against
creating suid shell scripts. We have shown how bash
protects against break-ins in one particular situation, but
that certainly does not imply that bash is "safe" in any
absolute sense. If you really must have suid scripts, you
should carefully consider all relevant security issues.

652

Finally, if you would like to learn more about UNIX
security, we recommend Practical UNIX and Internet
Security, by Gene Spafford and Simson Garfinkel
(O'Reilly).

[11] This feature is not documented in the manual pages
for old versions of bash.

[12] If this option has been included when the shell was
compiled. See Chapter 11 for details on configuring bash.

[13] In fact, most versions of UNIX intentionally disable
the suid feature for shell scripts.

653

Chapter 11. Shell
Scripting
For the majority of this book, we've looked at the various
elements that make up bash and how you can use them in
writing shell scripts. If you've used other programming
languages you will know that there is a difference
between writing a piece of code that gets a job done and
writing a piece of code that does the job but is also
maintainable and conforms to what we could call "good
practice."

This chapter will give a brief introduction to some aspects
of good practice and writing maintainable shell scripts
along with helpful tips and tricks that you can use to
make writing scripts easier.

What's That Do?
Six months ago you coded up a 100 line shell script. It
made perfect sense then, but now you look at it and
wonder, "Just what does that do?" This is a common
pitfall among programmers—especially those writing in a
shell language. Unfortunately, shells have developed with
more than their fair share of obscure punctuation. This is
a blessing for keeping typing to a minimum but doesn't

654

help readability. It's important to make your code as
readable as possible.

Comments

The first rule of shell scripting is to comment your code.
You should do this right from the start, even if the script
is only a couple of lines long. Shell scripts have a habit of
growing from a couple of lines to many hundreds of lines
as more features are added, so it's best to get into the
habit of commenting your code right at the beginning.

To start with, consider having a main header or banner
for your scripts. The information in the header should, at
a minimum, say what the script does. Here is an example
of a script header:

#!/bin/bash
###
Name: graphconv.sh
#
Converts graphics files from one format to another.
#
Usage: graphconv.sh <input-file> <output-file>
#
Author: C. Newham
Date: 2004/12/02
###

This main header gives the name of the script, a brief
summary of what it does, usage information, the name of
the author, and when the script was written.

655

If you are using a source control system (e.g., CVS), you
can dispense with the author and date as these will be
stored when the script is archived. If you aren't using such
a system, we strongly advise that you not only include the
above information but also place in the header additional
data such as modification dates and authors.

Whatever system you use, make sure that you make the
format of the banner a standard across all of your scripts.

Every function should also have a header. If it is a
standalone function, it should have a main header, as
given above. If it is a function used locally in a script, it
should have a simpler banner stating what it does, what
parameters it expects, and what it returns, e.g.:

Changes the filename extension
#
param: $infile - the original filename
#
returns: the modified name with new extension.
#
function change_filename()
...

Comments should also be used frequently in your code to
say what the code is doing. While we aren't about to
dictate style, comments within the flow of the code are
generally better on a line by themselves, while variable
declaration comments are better on the same line as the
variable:

startup_dir=/home/startup/ # directory with startup files
file_limit=50 # maximum number of files to process

656

...
if [-d "$startup_dir"]
then

the startup directory exists so read any initialisation file.
echo "initialising file processing..."

657

Variables and Constants

Headers and comments are just one way to document
your code. Another is by the use of descriptive variable
names. Good variable names should give an indication of
what the variable represents. Names like "x", "resn" or
"procd" will only have meaning at the time that you write
the script. Six months down the track and they will be a
mystery.

Good names should be short but descriptive. The three
examples above might have been more meaningfully
written as "file_limit", "resolution", and "was_processed".
Don't make the names too long; the name
"horizontal_resolution_of_the_picture" just clutters a
script and takes away any advantage in making the name
so descriptive.

Constants should be in uppercase and should normally be
declared as read-only:

declare -r CAPITAL_OF_ENGLAND="London"

You should always avoid "magic numbers" sprinkled
throughout the code by using constants. For example:

if [[$process_result == 68]]
...

should be replaced with:

658

declare -ir STAGE_3_FAILURE=68
...
if [[$process_result == $STAGE_3_FAILURE]]
...

Not only does this make the code more readable but it
makes changing the value easier, especially if it is used
numerous times in the script.

659

Starting Up
In Chapter 6 we talked about using getopts to obtain
options and arguments passed in to a shell script. This
command makes it easy for the script programmer to
process what the user has provided, but what about the
other half of the deal? The programmer must make an
effort to make life as easy for the user as possible.
Nothing makes a user more irate than a script that doesn't
take standard arguments, doesn't provide a usage
message, doesn't process the arguments in the expected
way, and forces the user into a way of thinking that the
programmer thinks is the right way. Having to examine
the source code for a script to find out what is an
acceptable argument or option is usually the last straw!

The Free Software Foundation has published a set of
guidelines for writing GNU software that suggests
standard ways in which UNIX utilities should operate.[1]

When writing your own shell scripts, it is worthwhile to
follow the guidelines because your script will then look
familiar to users who have used other command-line
programs.

At a minimum your script should provide single letter
options (such as -h) and long options with the double
dash (such as —help). It should also provide two options:
—help and —version. From the GNU manual:

660

—version

This option should direct the program to print
information about its name, version, origin, and legal
status, all on standard output, and then exit
successfully. Other options and arguments should be
ignored once this is seen, and the program should not
perform its normal function.

—help

This option should output brief documentation for
how to invoke the program, on standard output, then
exit successfully. Other options and arguments
should be ignored once this is seen, and the program
should not perform its normal function.

Near the end of the —help option's output there
should be a line that says where to mail bug reports.
It should have this format:

• Report bugs to mailing-address.

Table 11-1 lists a few of the common single-letter
and long options that you may consider using for
your own scripts. This list is by no means exhaustive
and is intended merely for guidance.

Table 11-1. Possible options

661

Long option Option Examples where used

—all -a du, ls, nm, stty, uname,
unexpand

—append -a etags, tee, time

—binary -b cpio, diff

—blocks -b head, tail

—date -d touch

—directory -d cpio

—exclude-from -X tar

—file -f fgrep

—help -h man

662

Long option Option Examples where used

—long -l ls

—line -l wc

—links -L cpio, ls

—output -o cc, sort

—quiet -q who

—recursive -r rm

—recursive -R ls

—silent -s Synonym for -quiet

—unique -u sort

663

Long option Option Examples where used

—verbose -v cpio, tar

—width -w pr, sdiff

For commands that take one or more input files and
produce an output file it is considered good practice to
make only the input files normal arguments (i.e.,
command filename) and have the output file specified by
an option (i.e., command -o filename).

Another thing to watch out for is assuming that a
particular environment variable needed by your script has
been set in the users' environment. If your script is relying
on the user to have set an environment variable, it is
probably better to redesign your script to allow the value
to be passed in as an argument.

[1] The document is available at http://www.gnu.org/prep/
standards/.

664

Potential Problems
Here are some useful things to watch out for when
writing shell scripts. Being aware of them will not only
save you time in tracking down bugs but will also make
your scripts more robust, more readable, and above all,
more maintainable.

• Don't create massive scripts or functions that try
to do everything. Split functionality up into
smaller units and place them in functions. This
not only makes the code easier to read but makes
it easier to debug.

• Always place the shell execution directive (e.g.,
#!/bin/bash) at the top of your scripts to ensure
they will be run by bash.

• Don't use reserved words for variable names.
This can become very confusing:

let let="echo"
let echo="hello"
echo "$echo world"

• Be careful with whitespace. Attempting the
following assignment will not give the expected
result:

cat = 5

665

• Don't use the same names for variables and
functions:

function letter
{

echo $1etter
}
letter=letter
letter letter

This causes more confusion that it's worth. While
this example is contrived, be on your guard for
more subtle examples. To guard against this, try
and name your functions using verbs, e.g.,
function print_letter.

• Be careful when using the test operator [...]. The
following two if statements are not the same,
although they look very similar:

if ["$var" = 42]
if ["$var" -eq 42]

The first is a string comparison, the second an
integer comparison. We suggest using ((...)) for
arithmetic comparisons in if statements.

666

Don't Use bash
Sometimes you might start writing a script and after
several hours of work find that you've created a monster
with many hundreds of lines of complicated code. This is
not always a bad thing, but it is a good idea to always be
thinking about whether the job could be done in a better
way.

Usually the choice of programming language should take
place at the design stage. If you are starting from scratch
on a Unix system you will have many options, including
C and C++, perl, python, and a host of others. They all
have their advantages and disadvantages, and no one
language will be the best solution for every problem.

If you find that your script has a huge amount of
processing to do quickly or if the script requires
mathematical capabilities beyond simple integer
arithmetic, it might be worthwhile considering C or C++
for the job. If you are looking for better portability across
systems, python or perl might be a better match to the
task.

However, even if bash is not suitable in the final solution
to a problem, you might find it makes an excellent
language for mocking up your solution and trying out
various options.

667

Chapter 12. bash for
Your System
The first 10 chapters of this book looked at nearly all
aspects of bash, from navigating the filesystem and
editing the command-line to writing shell scripts and
functions using lesser-known features of the shell. This is
all very well and good, but what if you have an old
version of bash and want the new features shown in this
book (or worse yet, you don't have bash at all)?

In this chapter we'll show you how to get the latest
version of bash and install it on your system, and we'll
discuss potential problems you might encounter along the
way. We'll also look briefly at the examples that come
with bash and how you can report bugs to the bash
maintainer.

Obtaining bash
If you have a direct connection to the Internet, you should
have no trouble obtaining bash; otherwise, you'll have to
do a little more work.

The bash home page is located at http://www.gnu.org/
software/bash/bash.html and you can find the very latest

668

http://www.gnu.org/software/bash/bash.html
http://www.gnu.org/software/bash/bash.html

details of the current distribution and where to obtain it
from there.

You can also get bash on CD-ROM by ordering it
directly from the Free Software Foundation, either via the
web ordering page at http://order.fsf.org or from:

The Free Software Foundation (FSF)
59 Temple Place - Suite 330
Boston, MA 02111-1307 USA
Phone: +1-617-542-5942
Fax: +1-617-542-2652
Email: order@fsf.org

669

Unpacking the Archive
Having obtained the archive file by one of the above
methods, you need to unpack it and install it on your
system. Unpacking can be done anywhere—we'll assume
you're unpacking it in your home directory. Installing it
on the system requires you to have root privileges. If you
aren't a system administrator with root access, you can
still compile and use bash; you just can't install it as a
system-wide utility. The first thing to do is uncompress
the archive file by typing gunzip bash-3.0.tar.gz.[1] Then
you need to "untar" the archive by typing tar -xf
bash-3.0.tar. The -xf means "extract the archived
material from the specified file." This will create a
directory called bash-3.0 in your home directory.

The archive contains all of the source code needed to
compile bash and a large amount of documentation and
examples. We'll look at these things and how you go
about making a bash executable in the rest of this chapter.

[1] gunzip is the GNU decompression utility. gunzip is
popular but relatively new and some systems don't have
it. If your system doesn't, you can obtain it by the same
methods as you obtained bash. gunzip is available from
the FSF. gzip -d does the same thing as gunzip.

670

What's in the Archive
The bash archive contains a main directory (bash-3.0 for
the current version) and a set of files and subdirectories.
Among the first files you should examine are:

MANIFEST

A list of all the files and directories in the archive

COPYING

The GNU Copyleft for bash

NEWS

A list of bug fixes and new features since the last
version

README

A short introduction and instructions for compiling
bash

You should also be aware of two directories:

doc

Information related to bash in various formats

671

examples

Examples of startup files, scripts, and functions

The other files and directories in the archive are mostly
things that are needed during the build. Unless you are
going to go hacking into the internal workings of the
shell, they shouldn't concern you.

Documentation

The doc directory contains a few articles that are worth
reading. Indeed, it would be well worth printing out the
manual entry for bash so you can use it in conjunction
with this book. The README file gives a short summary
of the files.

The document you'll most often use is the manual page
entry (bash.1). The file is in troff format—that used by
the manual pages. You can read it by processing it with
the text-formatter nroff and piping the output to a pager
utility: nroff -man bash.1 | more should do the trick.
You can also print it off by piping it to the lineprinter
(lp). This summarizes all of the facilities your version of
bash has and is the most up-to-date reference you can get.
This document is also available through the man facility
once you've installed the package, but sometimes it's nice
to have a hard copy so you can write notes all over it.

672

Of the other documents, FAQ is a Frequently Asked
Questions document with answers, readline.3 is the
manual entry for the readline facility, and article.ms is an
article about the shell that appeared in Linux Journal, by
the current bash maintainer, Chet Ramey.

673

Configuring and Building
bash

To compile bash "straight out of the box" is easy;[2] you
just type configure and then make! The bash configure
script attempts to work out if you have various utilities
and C library functions, and whereabouts they reside on
your system. It then stores the relevant information in the
file config.h. It also creates a file called config.status that
is a script you can run to recreate the current
configuration information. While the configure is
running, it prints out information on what it is searching
for and where it finds it.

The configure script also sets the location that bash will
be installed; the default is the /usr/local area (/usr/local/
bin for the executable, /usr/local/man for the manual
entries etc.). If you don't have root privileges and want it
in your own home directory, or you wish to install bash in
some other location, you'll need to specify a path to
configure. You can do this with the —exec-prefix option.
For example:

$ configure --exec-prefix=/usr
specifies that the bash files will be placed under the /usr
directory. Note that configure prefers option arguments
be given with an equals sign (=).

674

After the configuration finishes and you type make, the
bash executable is built. A script called bashbug is also
generated, which allows you to report bugs in the format
the bash maintainers want. We'll look at how you use it
later in this chapter.

Once the build finishes, you can see if the bash
executable works by typing ./bash. If it doesn't, turn to
the Section 11.3 in Chapter 11.

To install bash, type make install. This will create all of
the necessary directories (bin, info, man and its
subdirectories) and copy the files to them.

If you've installed bash in your home directory, be sure to
add your own bin path to your PATH and your own man
path to MANPATH.

bash comes preconfigured with nearly all of its features
enabled, but it is possible to customize your version by
specifying what you want with the —enable- feature and
—disable- feature command-line options to configure.

Table 12-1 is a list of the configurable features and a
short description of what those features do.

Table 12-1. Configurable features

675

Feature Description

alias Support for aliases.

arith-for-command

Support for the alternate form
of the `for' command that
behaves like the C language
for statement.

array-variables Support for one dimensional
arrays.

bang-history C-shell-like history expansion
and editing.

brace-expansion Brace expansion.

command-timing Support for the time
command.

cond-command Support for the [[conditional
command.

676

Feature Description

cond-regexp

Support for matching POSIX
regular expressions using the
=~ binary operator in the [[
conditional command.

directory-stack
Support for the pushd, popd,
and dirs directory
manipulation commands .

disabled-builtins

Whether a built-in can be run
with the builtin command,
even if it has been disabled
with enable -n.

dparen-arithmetic Support for ((...)) .

help-builtin Support for the help built-in.

history History via the fc and history
commands .

677

Feature Description

job-control
Job control via fg, bg, and
jobs if supported by the
operating system.

multibyte

Support for multibyte
characters if the operating
system provides the necessary
support.

net-redirections

Special handling of filenames
of the form /dev/tcp/HOST/
PORT and /dev/udp/HOST/
PORT when used in
redirections.

process-substitution
Whether process substitution
occurs, if supported by the
operating system.

prompt-string-decoding
Whether backslash escaped
characters in PS1, PS2, PS3,
and PS4 are allowed .

678

Feature Description

progcomp

Programmable completion
facilities. If readline is not
enabled, this option has no
effect .

readline readline editing and history
capabilities.

restricted
Support for the restricted
shell, the -r option to the shell,
and rbash.

select The select construct.

usg-echo-default

xpg-echo-default

Make echo expand
backslash-escaped characters
by default, without requiring
the -e option. This sets the
default value of the xpg_echo
shell option to on, which
makes the bash echo behave
more like the version specified

679

Feature Description

in the Single Unix
Specification, Version 2.

The options disabled-builtins and xpg-echo-default are
disabled by default. The others are enabled.

Many other shell features can be turned on or off by
modifying the file config-.top.h. For further details on this
file and configuring bash in general, see INSTALL.

Finally, to clean up the source directory and remove all of
the object files and executables, type make clean. Make
sure you run make install first, otherwise you'll have to
rerun the installation from scratch.

680

Testing bash

There are a series of tests that can be run on your newly
built version of bash to see if it is running correctly. The
tests are scripts that are derived from problems reported
in earlier versions of the shell. Running these tests on the
latest version of bash shouldn't cause any errors.

To run the tests just type make tests in the main bash
directory. The name of each test is displayed, along with
some warning messages, and then it is run. Successful
tests produce no output (unless otherwise noted in the
warning messages).

If any of the tests fail, you'll see a list of things that
represent differences between what is expected and what
happened. If this occurs you should file a bug report with
the bash maintainer. See the Section 12.4.2 later in this
chapter for information on how to do this.

681

Potential Problems

Although bash has been installed on a large number of
different machines and operating systems, there are
occasionally problems. Usually the problems aren't
serious and a bit of investigation can result in a quick
solution.

If bash didn't compile, the first thing to do is check that
configure guessed your machine and operating system
correctly. Then check the file NOTES, which contains
some information on specific UNIX systems. Also look
in INSTALL for additional information on how to give
configure specific compilation instructions.

682

Installing bash as a Login
Shell

Having installed bash and made sure it is working
correctly, the next thing to do is to make it your login
shell. This can be accomplished in two ways.

Individual users can use the chsh (change shell) command
after they log in to their accounts. chsh asks for their
password and displays a list of shells to choose from.
Once a shell is chosen, chsh changes the appropriate entry
in /etc/passwd. For security reasons, chsh will only allow
you to change to a shell if it exists in the file /etc/shells (if
/etc/shells doesn't exist, chsh asks for the pathname of the
shell).

Another way to change the login shell is to edit the
password file directly. On most systems, /etc/passwd will
have lines of the form:

cam:pK1Z9BCJbzCrBNrkjRUdUiTtFOh/:501:100:Cameron Newham:/home/cam:/bin/bash
cc:kfDKDjfkeDJKJySFgJFWErrElpe/:502:100:Cheshire Cat:/home/cc:/bin/bash

As root you can just edit the last field of the lines in the
password file to the pathname of whatever shell you
choose.

683

If you don't have root access and chsh doesn't work, you
can still make bash your login shell. The trick is to
replace your current shell with bash by using exec from
within one of the startup files for your current shell.

If your current shell is similar to sh (e.g., ksh), you have
to add the line:

[-f /pathname/bash] && exec /pathname/bash --login

to your .profile, where pathname is the path to your bash
executable.

You will also have to create an empty file called
.bash_profile. The existence of this file prevents bash
from reading your .profile and re-executing the
exec—thus entering an infinite loop. Any initialization
code that you need for bash can just be placed in
.bash_profile.

If your current shell is similar to csh (e.g., tcsh) things are
slightly easier. You just have to add the line:

if (-f /pathname/bash) exec /pathname/bash --login

to your .login, where pathname is the path to your bash
executable.

684

Examples

The bash archive also includes an examples directory.
This directory contains some subdirectories for scripts,
functions, and examples of startup files.

The startup files in the startup-files directory provide
many examples of what you can put in your own startup
files. In particular, bash_aliases gives many useful
aliases. Bear in mind that if you copy these files
wholesale, you'll have to edit them for your system
because many of the paths will be different. Refer to
Chapter 3 for further information on changing these files
to suit your needs.

The functions directory contains about 50 files with
function definitions that you might find useful. Among
them are:

basename

The basename utility, missing from some systems

dirfuncs

Directory manipulation facilities

dirname

The dirname utility, missing from some systems

685

whatis

An implementation of the Tenth Edition Bourne shell
whatis builtin

whence

An almost exact clone of the Korn shell whence
builtin

Especially helpful, if you come from a Korn shell
background, is kshenv. This contains function definitions
for some common Korn facilities such as whence, print,
and the two-parameter cd builtins.

The scripts directory contains over 20 examples of bash
scripts. The two largest scripts are examples of the
complex things you can do with shell scripts. The first is
a (rather amusing) adventure game interpreter and the
second is a C shell interpreter. The other scripts include
examples of precedence rules, a scrolling text display, a
"spinning wheel" progress display, and how to prompt the
user for a particular type of answer.

Not only are the script and function examples useful for
including in your environment, they also provide many
alternative examples that you can learn from when
reading this book. We encourage you to experiment with
them.

686

[2] This configuration information pertains to bash
version 3.0 and later. The configuration and installation
for earlier versions is fairly easy, although it differs in
certain details. For further information, refer to the
INSTALL instructions that came with your version of
bash.

687

Who Do I Turn to?
No matter how good something is or how much
documentation comes with it, you'll eventually come
across something that you don't understand or that doesn't
work. In such cases it can't be stressed enough to
carefully read the documentation (in computer parlance:
RTFM).[3] In many cases this will answer your question
or point out what you're doing wrong.

Sometimes you'll find this only adds to your confusion or
confirms that there is something wrong with the software.
The next thing to do is to talk to a local bash guru to sort
out the problem. If that fails, or there is no guru, you'll
have to turn to other means (currently only via the
Internet).

Asking Questions

If you have any questions about bash, there are currently
two ways to go about getting them answered. You can
email questions to bash-maintainers@gnu.org or you can
post your question to the USENET newsgroups
gnu.bash.bug or comp.unix.shell.

In both cases either the bash maintainer or some
knowledgeable person on USENET will give you advice.

688

When asking a question, try to give a meaningful
summary of your question in the subject line.

689

Reporting Bugs

Bug reports should be sent to bug-bash@gnu.org, and
include the version of bash and the operating system it is
running on, the compiler used to compile bash, a
description of the problem, a description of how the
problem was produced, and, if possible, a fix for the
problem. The best way to do this is with the bashbug
script, installed with bash.

Before you run bashbug, make sure you've set your
EDITOR environment variable to your favorite editor
and have exported it (bashbug defaults to emacs, which
may not be installed on your system). When you execute
bashbug it will enter the editor with a partially blank
report form. Some of the information (bash version,
operating system version, etc.) will have been filled in
automatically. We'll take a brief look at the form, but
most of it is self-explanatory.

The From: field should be filled out with your email
address. For example:

From: confused@wonderland.oreilly.com

Next comes the Subject: field; make an effort to fill it
out, as this makes it easier for the maintainers when they
need to look up your submission. Just replace the line

690

surrounded by square brackets with a meaningful
summary of the problem.

The next few lines are a description of the system and
should not be touched. Next comes the Description:
field. You should provide a detailed description of the
problem and how it differs from what is expected. Try to
be as specific and concise as possible when describing the
problem.

The Repeat-By: field is where you describe how you
generated the problem; if necessary, list the exact
keystrokes you used. Sometimes you won't be able to
reproduce the problem yourself, but you should still fill
out this field with the events leading up to the problem.
Attempt to reduce the problem to the smallest possible
form. For example, if it was a large shell script, try to
isolate the section that produced the problem and include
only that in your report.

Lastly, the Fix: field is where you can provide the
necessary patch to fix the problem if you've investigated
it and found out what was going wrong. If you have no
idea what caused the problem, just leave the field blank.

Once you've finished filling in the form, save it and exit
your editor. The form will automatically be sent to the
maintainers.

[3] RTFM stands for "Read The F(laming) Manual."

691

Appendix A. Related
Shells
The fragmentation of the UNIX marketplace has had its
advantages and disadvantages. The advantages came
mostly in the early days: lack of standardization and
proliferation among technically knowledgeable
academics and professionals contributed to a healthy
"free market" for UNIX software, in which several
programs of the same type (e.g., shells, text editors,
system administration tools) would often compete for
popularity. The best programs would usually become the
most widespread, while inferior software tended to fade
away.

But often there was no single "best" program in a given
category, so several would prevail. This led to the current
situation, where multiplicity of similar software has led to
confusion, lack of compatibility, and—most unfortunate
of all—the inability of UNIX to capture as big a share of
the market as other operating platforms (MS-DOS,
Microsoft Windows, Novell NetWare, etc.).

The "shell" category has probably suffered in this way
more than any other type of software. As we said in the
Preface and in Chapter 1, several shells are currently
available; the differences between them are often not all
that great.

692

Therefore we felt it necessary to include information on
shells similar to bash. This appendix summarizes the
differences between bash and the following:

• The standard Bourne shell, as a kind of
"baseline"

• The IEEE POSIX 1003.2 shell Standard, to
which bash adheres and other shells will adhere
in the future

• The Korn shell (ksh), a popular commercial shell
provided with many UNIX systems

• pdksh, a widely used public domain Korn shell

• zsh, a popular alternative to bash and the Korn
shell

The Bourne Shell
bash is almost completely backward-compatible with the
Bourne shell. The only significant feature of the latter that
bash doesn't support is ^ (caret) as a synonym for the
pipe (|) character. This is an archaic feature that the
Bourne shell includes for its own backward compatibility
with earlier shells. No modern UNIX version has any
shell code that uses ^ as a pipe.

693

To describe the differences between the Bourne shell and
bash, we'll go through each chapter of this book and
enumerate the features discussed in the chapter that the
Bourne shell does not support. Although some versions of
the Bourne shell exist that include a few bash features,[1]

we refer to the standard Bourne shell that has been around
for many years.

Chapter 1

The cd - form of the cd command; tilde (~)
expansion; the jobs command; the help built-in.

Chapter 2

All. (That is, the Bourne shell doesn't support any of
the readline, history, and editing features discussed
in this chapter.)

Chapter 3

Aliases; prompt string customization; set options.
The Bourne shell supports only the following: -e, -k,
-n, -t, -u, -v, -x, and -. It doesn't support option
names (-o). The shopt built-in. Environment files
aren't supported. The following built-in variables
aren't supported:

All variables beginning with BASH_

All variables beginning with COMP

694

CDPATH DIRSTACK

FCEDIT FUNCNAME

GROUPS HISTCMD

HISTCONTROL HISTFILE

HISTIGNORE HISTSIZE

HISTFILESIZE HOSTFILE

HOSTNAME HOSTTYPE

IGNOREEOF INPUTRC

LANG LC_ALL

LC_COLLATE LC_MESSAGES

LINENO MACHTYPE

MAILCHECK OLDPWD

695

OPTARG OPTERR

OPTIND OSTYPE

PIPESTATUS

PS3 PS4

POSIXLY_CORRECTPROMPT_COMMAND

PWD RANDOM

REPLY SECONDS

SHELLOPTS SHLVL

TIMEFORMAT TMOUT

auto_resume histchars

Chapter 4

Functions; the type command; the local command;
the ${#parameter} operator; pattern-matching
variable operators (%, %%, #, ##). Extended pattern
matching. Command-substitution syntax is different:

696

use the older ` command ` instead of $(command).
The built-in pushd and popd commands.

Chapter 5

The ! keyword; the select construct isn't supported.
The Bourne shell return doesn't exit a script when it
is sourced with . (dot).

Chapter 6

Use the external command getopt instead of getopts,
but note that it doesn't really do the same thing.
Integer arithmetic isn't supported: use the external
command expr instead of the $((arithmetic-exp))
syntax. The arithmetic conditional ((arithmetic-exp
)) isn't supported; use the old condition test syntax
and the relational operators -lt, -eq, etc. Array
variables are not supported. declare and let aren't
supported.

Chapter 7

The command, builtin, and enable built-ins. The -e
and -E options to echo are not supported. The I/O
redirectors >| and <> are not supported. None of the
options to read is supported. printf is usually
available as an external command.

Chapter 8

Job control—specifically, the jobs, fg, and bg
commands. Job number notation with %, i.e., the kill

697

and wait commands only accept process IDs. The -
option to trap (reset trap to the default for that
signal). trap only accepts signal numbers, not logical
names. The disown built-in.

Chapter 9

The DEBUG, ERR, and RETURN fake signals are
not supported. The EXIT fake signal is supported as
signal 0.

Chapter 10

The ulimit command and privileged mode aren't
supported. The -S option to umask is not supported.
The Bourne shell's restrictive counterpart, rsh, only
inhibits assignment to PATH.

[1] For example, the Bourne shell distributed with System
V supports functions and a few other shell features
common to bash and the Korn shell.

698

The IEEE 1003.2 POSIX
Shell Standard
There have been many attempts to standardize UNIX.
Hardware companies' monolithic attempts at market
domination, fragile industry coalitions, marketing
failures, and other such efforts are the stuff of
history—and the stuff of frustration.

Only one standardization effort has not been tied to
commercial interests: the Portable Operating System
Interface, known as POSIX. This effort started in 1981
with the /usr/group (now UniForum) Standards
Committee, which produced the /usr/group Standard
three years later. The list of contributors grew to include
the Institute of Electrical and Electronic Engineers
(IEEE) and the International Organization for
Standardization (ISO).

The first POSIX standard was published in 1988. This
one, called IEEE P1003.1, covers low-level issues at the
system-call level. IEEE P1003.2, covering the shell,
utility programs, and user interface issues, was ratified in
September 1992 after a six-year effort. In September
2001, a joint revision of both standards was approved.
The new standard, covering all the material in the two
earlier separate documents, became known as IEEE

699

Standard 1003.1-2001. The latest version of the standard
is 1003.1-2004.

The POSIX standards were never meant to be rigid and
absolute. The committee members certainly weren't about
to put guns to the heads of operating system
implementers and force them to adhere. Instead, the
standards are designed to be flexible enough to allow for
both coexistence of similar available software, so that
existing code isn't in danger of obsolescence, and the
addition of new features, so that vendors have the
incentive to innovate. In other words, they are supposed
to be the kind of third-party standards that vendors might
actually be interested in following.

As a result, most UNIX vendors currently comply with
both standards. bash is no exception; it is almost 100%
POSIX-compliant.

The shell part of the standard describes utilities that must
be present on all systems, and others that are optional,
depending upon the nature of the system. One such option
is the User Portability Utilities option, which defines
standards for interactive shell use and interactive utilities
like the vi editor. The standard—on the order of 2,000
pages—is available through the IEEE; for information,
contact the IEEE:

IEEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331
(800) 678-IEEE (United States and Canada)

700

(732) 981-0060 (international/local)
(732) 981-9667 (fax)
customer.service@ieee.org
http://www.standards.ieee.org/catalog/ordering.html

The committee members had two motivating factors to
weigh when they designed the shell standard. On the one
hand, the design had to accommodate, as much as
possible, existing shell code written under various
Bourne-derived shells (the Version 7, System V, BSD,
and Korn shells). These shells are different in several
extremely subtle ways, most of which have to do with the
ways certain syntactic elements interact with each other.

It must have been quite difficult and tedious to spell out
these differences, let alone to reach compromises among
them. Throw in biases of some committee members
towards particular shells, and you might understand why
it took six years to ratify the first 1003.2 standard and
further years to merge the standards.

On the other hand, the shell design had to serve as a
standard on which to base future shell implementations.
This implied goals of simplicity, clarity, and
precision—objectives that seem especially elusive in the
context of the above problems.

The designers found one way of ameliorating this
dilemma: they decided that the standard should include
not only the features included in the shell, but also those
explicitly omitted and those included but with unspecified
functionality. The latter category allows some of the

701

existing shells' innovations to "sneak through" without
becoming part of the standard, while listing omitted
features helps programmers determine which features in
existing shell scripts won't be portable to future shells.

The POSIX standard is primarily based on the System V
Bourne shell, which is a superset of the Version 7 shell
discussed earlier in this appendix. Therefore you should
assume that bash features that aren't present in the Bourne
shell also aren't included in the POSIX standard.

The following bash features are left "unspecified" in the
standard, meaning that their syntax is acceptable but their
functionality is not standardized:

• The other syntax for functions shown in Chapter
4 is supported; see the following discussion.

• The [[...]] syntax for conditional tests. The
external test or [...] utility should be used instead.

• The select control structure.

• Code blocks ({...}) are supported, but for
maximum portability, the curly brackets should
be quoted (for reasons too complicated to go into
here).

• Signal numbers are only allowed if the numbers
for certain key signals (INT, TERM, and a few
others) are the same as on the most important

702

historical versions of UNIX. In general, shell
scripts should use symbolic names for signals.

The POSIX standard supports functions, but the
semantics are weaker: it is not possible to define local
variables, and functions can't be exported.

The command lookup order has been changed to allow
certain built-in commands to be overridden by functions.
Built-in commands are divided into two sets by their
positions in the command lookup order: some are
processed before functions, some after. Specifically, the
built-in commands break, : (do nothing), continue,
.(source), eval, exec, exit, export, readonly, return, set,
shift, trap, and unset take priority over functions.

Finally, because the POSIX standard is meant to promote
shell script portability, it avoids mentioning certain
fundamental implementation issues: in particular, there is
no requirement that multitasking be used for background
jobs, subshells, etc. This was done to allow portability to
non-multitasking systems like MS-DOS, so that shells on
these systems can be POSIX-compliant.

703

The Korn Shell
One of the first major alternatives to the "traditional"
shells, Bourne and C, was the Korn shell, publicly
released in 1986 as part of AT&T's "Experimental
Toolchest." The Korn shell was written by David Korn at
AT&T. The first version was unsupported, but eventually
UNIX System Laboratories (USL) decided to give it
support when they released it with their version of UNIX
(System V Release 4) in 1989. The November 1988 Korn
shell is the most widely used version of this shell.

The 1988 release is not fully POSIX-compliant—less so
than bash. The latest release (1993) has brought the Korn
shell into better compliance as well as providing more
features and streamlining existing features.

The 1993 Korn shell and bash share many features, but
there are some important differences in the Korn shell:

• Functions are more like separate entities than part
of the invoking shell (traps and options are not
shared with the invoking shell).

• Associative arrays are supported.

• Floating-point numbers and expressions are
supported.

704

• Coroutines are supported. Two processes can
communicate with one another by using the print
and read commands.

• The command print replaces echo. print can
have a file descriptor specified and can be used to
communicate with coroutines.

• Function autoloading is supported. Functions are
read into memory only when they are called.

• One-dimensional arrays are supported, although
they are limited in size (4,096 elements in early
versions of ksh93, 64K elements in later
releases).

• The history list is kept in a file rather than in
memory. This allows concurrent instantiations of
the shell to access the same history list, a possible
advantage in certain circumstances.

• There is no default startup file. If the
environment variable ENV is not defined,
nothing is read.

• The type command is replaced with the more
restrictive whence.

• The primary prompt string (PS1) doesn't allow
escaped commands.

• There is no built-in equivalent to enable.

705

• There is no provision for key bindings and no
direct equivalent to readline.

• There are no built-in equivalents to pushd, popd,
and dirs. They have to be defined as functions if
you want them.

• The history substitution mechanism is not
supported.

• Prompt strings don't allow backslash-escaped
special characters.

• Many of the bash environment variables don't
exist.

In addition, the startup and environment files for Korn are
different, consisting of .profile and the file specified by
the ENV variable. The default environment file can be
overridden by using the variable ENV. There is no logout
file.

For a more detailed list of the differences between bash
and the Korn shell see the FAQ file in the doc directory of
the bash archive.

The Korn shell is a good alternative to bash. Its only
major drawback is that it is upgraded only every few
years.

706

pdksh
pdksh (Public Domain Korn shell) is a version of the
Korn shell that is a free alternative to bash. pdksh is
available as source code in various places on the Internet,
including the USENET newsgroup comp.sources.unix,
and the pdksh home page http://www.cs.mun.ca/
~michael/pdksh/ of the current maintainer, Michael
Rendell.

pdksh was originally written by Eric Gisin, who based it
on Charles Forsyth's public domain Version 7 Bourne
shell. It has all Bourne shell features plus some of the
POSIX extensions and a few features of its own.

pdksh's additional features include user-definable tilde
notation, in which you can set up ~ as an abbreviation for
anything, not just usernames.

Otherwise, pdksh lacks a few features of the official Korn
version and bash. In particular, it lacks the following
bash features:

• The built-in variable PS4

• The advanced I/O redirectors >| and <>

• The options errexit, noclobber, and privileged

707

http://www.cs.mun.ca/~michael/pdksh/
http://www.cs.mun.ca/~michael/pdksh/

One important advantage that pdksh has over bash is that
the executable is only about a third the size and it runs
considerably faster. Weighed against this is that it is less
POSIX-compliant, has had numerous people add code to
it (so it hasn't been as strongly controlled as bash), and
isn't as polished a product as bash (for example, the
documentation isn't anywhere near as detailed or
complete).

However, pdksh is a worthwhile alternative for those who
want something other than bash and can't obtain the Korn
shell.

708

zsh
zsh is a powerful interactive shell and scripting language
with many features found in bash, ksh, and tcsh, as well
as several unique features.

zsh was originally written by Paul Falsted in the early
1990s and is now maintained by various people.

It is freely available and should compile and run on just
about any modern version of Unix. Ports for other
operating systems are also available. The zsh home page
is http://www.zsh.org. The current version is 4.2.1.

Some of the main differences between bash and zsh are:

• Extended globbing capabilities

• A slightly more advanced textual completion
system

• A powerful multi-line command line editor

• Various visual bells and whistles, such as
command prompt color and placement

zsh is a good alternative to bash, especially for "power
users."

709

Shell Clones and
Unix-like Platforms
The proliferation of shells has not stopped at the
boundaries of UNIX-dom. Many programmers who got
their initial experience on UNIX systems and
subsequently crossed over into the PC world wished for a
nice UNIX-like environment. It's not surprising then that
several UNIX shell-style interfaces to small-computer
operating systems have appeared, Bourne shell
emulations among them.

In the past several years, not only shell clones have
appeared, but entire Unix "environments." Two of them
use shells that we've already discussed. Two others
provide their own shell reimplementations. Providing lists
of major and minor differences is counterproductive.
Instead, this section describes each environment in turn
(in alphabetical order), along with contact and Internet
download information.

Cygwin

Cygnus Consulting (now part of Red Hat) created the
cygwin environment. First creating cgywin.dll, a shared
library that provides Unix system call emulation, they

710

ported a large number of GNU utilities to various
versions of Microsoft Windows. The greatest
functionality comes under Windows/NT, Windows 2000,
and Windows XP, although the environment can and does
work under Windows 95/98/ME, as well.

The cygwin environment uses bash for its shell, GCC for
its C compiler, and the rest of the GNU utilities for its
Unix toolset. A sophisticated mount command provides a
mapping of the Windows C:\path notation to Unix
filenames.

The cygwin project can be found at
http://www.cygwin.com.

711

http://www.cygwin.com

DJGPP

The DJGPP suite provides 32-bit GNU tools for the
MS-DOS environment. To quote the web page:

DJGPP is a complete 32-bit C/C++ development
system for Intel 80386 (and higher) PCs running
MS-DOS. It includes ports of many GNU
development utilities. The development tools
require a 80386 or newer computer to run, as do
the programs they produce. In most cases, the
programs it produces can be sold commercially
without license or royalties.

The name comes from the initials of D.J. Delorie, who
ported the GNU C++ compiler, g++ to MS-DOS, and the
text initials of g++, GPP. It grew into essentially a full
Unix environment on top of MS-DOS, with all the GNU
tools and bash as its shell. Unlike cygwin or UWIN (see
later in this Appendix), you don't need a version of
Windows, just a full 32-bit processor and MS-DOS.
(Although, of course, you can use DJGPP from within a
Windows MS-DOS window.) The web site is
http://www.delorie.com/djgpp/.

712

http://www.delorie.com/djgpp/

MKS Toolkit

Perhaps the most established Unix environment for the
PC world is the MKS Toolkit from Mortice Kern
Systems:

MKS Canada - Corporate Headquarters
410 Albert Street
Waterloo, ON N2L 3V3
Canada
+1 519 884-2251
+1 519 884-8861 (fax)
+1 800 265-2797 (sales)
http://www.mks.com

The MKS Toolkit comes in various versions depending
upon the development environment and the number of
developers who will be using it. It includes a shell that is
POSIX-compliant, along with just about all the features
of the 1988 Korn shell, as well as over 300 utilities, such
as awk, perl, vi, make, etc. Their library supports over
1,500 Unix APIs, making it extremely complete and easy
to port to the Windows environment. More information is
available at http://www.mkssoftware.com/products/tk/
ds_tkdev.asp.

713

AT&T UWIN

The UWIN package is a project by David Korn and his
colleagues to make a Unix environment available under
Microsoft Windows. It is similar in structure to cygwin,
discussed earlier. A shared library, posix.dll, provides
emulation of the Unix system call APIs. The system call
emulation is quite complete. An interesting twist is that
the Windows registry can be accessed as a filesystem
under /reg. On top of the Unix API emulation, ksh93 and
over 200 Unix utilities (or rather, re-implementations)
have been compiled and run. The UWIN environment
relies on the native Microsoft Visual C/C++ compiler,
although the GNU development tools are available for
download and use with UWIN.

The project can be found at http://www.research.att.com/
sw/tools/uwin/. The web site describes what is available,
with links for downloading binaries, as well as
information on commercial licensing of the UWIN
package. Also included are links to various papers on
UWIN, additional useful software, and links to other,
similar packages.

714

http://www.research.att.com/sw/tools/uwin/
http://www.research.att.com/sw/tools/uwin/

Appendix B. Reference
Lists

Invocation
Table B-1 and Table B-2 list the options you can use
when invoking current versions of bash and the older 1.x
version, respectively.[1] The multicharacter options must
appear on the command line before the single-character
options. In addition to these, any set option can be used
on the command line; see Table B-7. Login shells are
usually invoked with the options -i (interactive), -s (read
from standard input), and -m (enable job control).

Table B-1. Command-line options

Option Meaning

-c string

Commands are read from string, if
present. Any arguments after string
are interpreted as positional
parameters, starting with $0.

715

Option Meaning

-D

A list of all double-quoted strings
preceded by $ is printed on the
standard ouput. These are the
strings that are subject to language
translation when the current locale
is not C or POSIX. This also turns
on the -n option.

-i

Interactive shell. Ignores signals
TERM, INT, and QUIT. With job
control in effect, TTIN, TTOU,
and TSTP are also ignored.

-l Makes bash act as if invoked as a
login shell.

-o option Takes the same arguments as set
-o.

-O, +O
shopt-option

shopt-option is one of the shell
options accepted by the shopt
builtin. If shopt-option is present,

716

Option Meaning

-O sets the value of that option;
+O unsets it. If shopt-option is not
supplied, the names and values of
the shell options accepted by shopt
are printed on the standard output.
If the invocation option is +O, the
output is displayed in a format that
may be reused as input.

-s

Reads commands from the
standard input. If an argument is
given to bash, this flag takes
precedence (i.e., the argument
won't be treated as a script name
and standard input will be read).

-r Restricted shell. See Chapter 10.

-v Prints shell input lines as they're
read.

717

Option Meaning

-

Signals the end of options and
disables further option processing.
Any options after this are treated as
filenames and arguments. — is
synonymous with -.

—debugger

Arranges for the debugger profile
to be executed before the shell
starts. Turns on extended
debugging mode and shell function
tracing.[2]

—dump-strings Does the same as -D.

—dump-po-strings
Does the same as -D but the output
is in the GNU gettext po (portable
object) file format.

—help Displays a usage message and
exits.

718

Option Meaning

—login Makes bash act as if invoked as a
login shell. Same as -l.

—noediting
Does not use the GNU readline
library to read command lines if
interactive.

—noprofile
Does not read the startup file /etc/
profile or any of the personal
initialization files.

—norc

Does not read the initialization file
~/.bashrc if the shell is interactive.
This is on by default if the shell is
invoked as sh.

—posix

Changes the behavior of bash to
follow the POSIX guidelines more
closely where the default operation
of bash is different.

719

Option Meaning

—quiet Shows no information on shell
startup. This is the default.

—rcfile file,
—init-file file

Executes commands read from file
instead of the initialization file
~/.bashrc, if the shell is interactive.

—verbose Equivalent to -v.

—version Shows the version number of this
instance of bash and then exits.

[2] Only available in bash version 3.0 and later.

Table B-2. Old command-line options

720

Option Meaning

-c string

Commands are read from string, if
present. Any arguments after string
are interpreted as positional
parameters, starting with $0.

-i

Interactive shell. Ignores signals
TERM, INT, and QUIT. With job
control in effect, TTIN, TTOU, and
TSTP are also ignored.

-s

Reads commands from the
standard input. If an argument is
given to bash, this flag takes
precedence (i.e., the argument
won't be treated as a script name
and standard input will be read).

-r Restricted shell. See Chapter 10.

-
Signals the end of options and
disables further option processing.
Any options after this are treated as

721

Option Meaning

filenames and arguments. — is
synonymous with -.

-norc

Does not read the initialization file
~/.bashrc if the shell is interactive.
This is on by default if the shell is
invoked as sh.

-noprofile
Does not read the startup file /etc/
profile or any of the personal
initialization files.

-rcfile file
Executes commands read from file
instead of the initialization file
~/.bashrc, if the shell is interactive.

-version Shows the version number of this
instance of bash when starting.

-quiet Shows no information on shell
startup. This is the default.

722

Option Meaning

-login Makes bash act as if invoked as a
login shell.

-nobraceexpansion Does not perform curly brace
expansion.

-nolineediting
Does not use the GNU readline
library to read command lines if
interactive.

-posix

Changes the behavior of bash to
follow the POSIX guidelines more
closely where the default operation
of bash is different.

[1] At the time of writing, the old 1.x versions of bash are
still used. We strongly recommend that you upgrade to
the latest version. We have included a table of old options
(Table B-2) just in case you encounter an old version of
the shell.

723

Prompt String
Customizations
Table B-3 shows a summary of the prompt
customizations that are available. The customizations \[
and \] are not available in bash versions prior to 1.14. \a,
\e, \H, \T, \@, \v, and \V are not available in versions
prior to 2.0. \A, \D, \j, \l, and \r are only available in later
versions of bash 2.0 and in bash 3.0.

Table B-3. Prompt string customizations

Command Meaning

\a The ASCII bell character (007)

\A The current time in 24-hour HH:MM
format

\d The date in "Weekday Month Day" format

724

Command Meaning

\D
{format}

The format is passed to strftime(3) and the
result is inserted into the prompt string; an
empty format results in a locale-specific
time representation; the braces are required

\e The ASCII escape character (033)

\H The hostname

\h The hostname up to the first "."

\j The number of jobs currently managed by
the shell

\l The basename of the shell's terminal
device name

\n A carriage return and line feed

725

Command Meaning

\r A carriage return

\s The name of the shell

\T The current time in 12-hour HH:MM:SS
format

\t The current time in HH:MM:SS format

\@ The current time in 12-hour a.m./p.m.
format

\u The username of the current user

\v The version of bash (e.g., 2.00)

\V The release of bash; the version and
patchlevel (e.g., 3.00.0)

726

Command Meaning

\w The current working directory

\W The basename of the current working
directory

\# The command number of the current
command

\! The history number of the current
command

\$ If the effective UID is 0, print a #,
otherwise print a $

\nnn Character code in octal

\\ Print a backslash

727

Command Meaning

\[
Begin a sequence of non-printing
characters, such as terminal control
sequences

\] End a sequence of non-printing characters

728

Built-In Commands and
Reserved Words
Table B-4 shows a summary of all built-in commands and
reserved words. The letters in the Type column of the
table have the following meanings: R = reserved word,
blank = Builtin.

Table B-4. Commands and reserved words

Command Chapter Type Summary

! 5 R Logical NOT of a
command exit status.

: 7
Do nothing (just do
expansions of any
arguments).

. 4 Read file and execute its
contents in current shell.

729

Command Chapter Type Summary

alias 3
Set up shorthand for
command or command
line.

bg 8 Put job in background.

bind 2
Bind a key sequence to a
readline function or
macro.

break 5
Exit from surrounding
for, select, while, or
until loop.

builtin 5 Execute the specified
shell built-in.

case 5 R
Reserved word.
Multi-way conditional
construct.

730

Command Chapter Type Summary

cd 1 Change working
directory.

command 7
Run a command
bypassing shell function
lookup.

compgen D Generate possible
completion matches.

complete D Specify how completion
should be performed.

continue
Skip to next iteration of
for, select, while, or
until loop.

declare 6 Declare variables and
give them attributes.

731

Command Chapter Type Summary

dirs 6
Display the list of
currently remembered
directories.

disown 8 Remove a job from the
job table.

do 5 R
Part of a for, select,
while, or until looping
construct.

done 5 R
Part of a for, select,
while, or until looping
construct.

echo 4 Expand and print any
arguments.

elif 5 R Part of an if construct.

732

Command Chapter Type Summary

else 5 R Part of an if construct.

enable 7 Enable and disable
built-in shell commands.

esac 5 R Part of a case construct.

eval 7
Run the given arguments
through command-line
processing.

exec 9 Replace the shell with
the given program.

exit 5 Exit from the shell.

export 3 Create environment
variables.

733

Command Chapter Type Summary

fc 2 Fix command (edit
history file).

fg 8 Put background job in
foreground.

fi 5 R Part of an if construct.

for 5 R Looping construct.

function 4 R Define a function.

getopts 6 Process command-line
options.

hash 3
Full pathnames are
determined and
remembered.

734

Command Chapter Type Summary

help 1
Display helpful
information on built-in
commands.

history 1 Display command
history.

if 5 R Conditional construct.

in 5 R Part of a case construct.

jobs 1 List any background
jobs.

kill 8 Send a signal to a
process.

let 6 Arithmetic variable
assignment.

735

Command Chapter Type Summary

local 4 Create a local variable.

logout 1 Exits a login shell.

popd 4 Removes a directory
from the directory stack.

pushd 4 Adds a directory to the
directory stack.

pwd 1 Print the working
directory.

read 7 Read a line from
standard input.

readonly 6 Make variables read-only
(unassignable).

736

Command Chapter Type Summary

return 5
Return from the
surrounding function or
script.

select 5 R Menu-generation
construct.

set 3 Set options.

shift 6 Shift command-line
arguments.

suspend Suspend execution of a
shell.

test 5 Evaluates a conditional
expression.

then 5 R Part of an if construct.

737

Command Chapter Type Summary

time R

Run command pipeline
and print execution
times. The format of the
output can be controlled
with TIMEFORMAT.

times

Print the accumulated
user and system times for
processes run from the
shell.

trap 8 Set up a signal-catching
routine.

type 3 Identify the source of a
command.

typeset 6
Declare variables and
give them attributes.
Same as declare.

738

Command Chapter Type Summary

ulimit 10 Set/show process
resource limits.

umask 10 Set/show file permission
mask.

unalias 3 Remove alias definitions.

unset 3 Remove definitions of
variables or functions.

until 5 R Looping construct.

wait 8 Wait for background
job(s) to finish.

while 5 R Looping construct.

739

Built-In Shell Variables
Table B-5 shows a complete list of environment variables
available in bash 3.0. The letters in the Type column of
the table have the following meanings: A = Array, L =
colon separated list, R = read-only, U = unsetting it
causes it to lose its special meaning.

Note that the variables beginning BASH_, beginning
COMP, DIRSTACK, FUNCNAME, GLOBIGNORE,
GROUPS, HISTIGNORE, HOSTNAME,
HISTTIMEFORMAT, LANG, LC_ALL,
LC_COLLATE, LC_MESSAGE, MACHTYPE,
PIPESTATUS, SHELLOPTS, and TIMEFORMAT are
not available in versions prior to 2.0. BASH_ENV
replaces ENV found in earlier versions.

Table B-5. Environment variables

Variable Chapter Type Description

* 4 R
The positional parameters
given to the current script
or function.

740

Variable Chapter Type Description

@ 4 R
The positional parameters
given to the current script
or function.

4 R
The number of arguments
given to the current script
or function.

- R Options given to the shell
on invocation.

? 5 R Exit status of the previous
command.

R Last argument to the
previous command.

$ 8 R Process ID of the shell
process.

741

Variable Chapter Type Description

! 8 R Process ID of the last
background command.

0 4 R Name of the shell or shell
script.

BASH 3
The full pathname used to
invoke this instance of
bash.

BASH_ARGC 9 A

An array of values which
are the number of
parameters in each frame
of the current bash
execution call stack. The
number of parameters to
the current subroutine
(shell function or script
executed with . or source)
is at the top of the stack.

742

Variable Chapter Type Description

BASH_ARGV 9 A

All of the parameters in
the current bash execution
call stack. The final
parameter of the last
subroutine call is at the top
of the stack; the first
parameter of the initial call
is at the bottom.

BASH_COMMAND 9

The command currently
being executed or about to
be executed, unless the
shell is executing a
command as the result of a
trap, in which case it is the
command executing at the
time of the trap.

BASH_EXECUTION_STRING The command argument to
the -c invocation option.

743

Variable Chapter Type Description

BASH_ENV 3
The name of a file to run
as the environment file
when the shell is invoked.

BASH_LINENO 9 A

An array whose members
are the line numbers in
source files corresponding
to each member of
@var{FUNCNAME}.
${BASH_LINENO[$i]} is
the line number in the
source file where
${FUNCNAME[$i + 1]}
was called. The
corresponding source file
name is
${BASH_SOURCE[$i +
1]}.

BASH_REMATCH AR

An array whose members
are assigned by the =~
binary operator to the [[
conditional command. The
element with index 0 is the

744

Variable Chapter Type Description

portion of the string
matching the entire regular
expression. The element
with index n is the portion
of the string matching the
nth parenthesized
subexpression.

BASH_SOURCE 9 A

An array containing the
source filenames
corresponding to the
elements in the
FUNCNAME array
variable.

BASH_SUBSHELL

Incremented by one each
time a subshell or subshell
environment is spawned.
The initial value is 0.

BASH_VERSION 3 The version number of this
instance of bash.

745

Variable Chapter Type Description

BASH_VERSINFO 3,6 AR

Version information for
this instance of bash. Each
element of the array holds
parts of the version
number.

CDPATH 3 L A list of directories for the
cd command to search.

COMP_CWORD

An index into
${COMP_WORDS} of
the word containing the
current cursor position.
This variable is available
only in shell functions
invoked by the
programmable completion
facilities.

COMP_LINE

The current command line.
This variable is available
only in shell functions and
external commands

746

Variable Chapter Type Description

invoked by the
programmable completion
facilities.

COMP_POINT

The index of the current
cursor position relative to
the beginning of the
current command. If the
current cursor position is
at the end of the current
command, the value of this
variable is equal to
${#COMP_LINE}. This
variable is available only
in shell functions and
external commands
invoked by the
programmable completion
facilities.

COMP_WORDBREAKS U

The set of characters that
the Readline library treats
as word separators when
performing word

747

Variable Chapter Type Description

completion. If
COMP_WORDBREAKS
is unset, it loses its special
properties, even if it is
subsequently reset.

COMP_WORDS A

An array of the individual
words in the current
command line. This
variable is available only
in shell functions invoked
by the programmable
completion facilities.

COMPREPLY A

The possible completions
generated by a shell
function invoked by the
programmable completion
facility.

DIRSTACK 4,6 ARU The current contents of the
directory stack.

748

Variable Chapter Type Description

EUID R The effective user ID of
the current user.

FUNCNAME 9 ARU

An array containing the
names of all shell
functions currently in the
execution call stack. The
element with index 0 is the
name of any
currently-executing shell
function. The bottom-most
element is "main". This
variable exists only when a
shell function is executing.

FCEDIT 2 The default editor for the
fc command.

FIGNORE L
A list of names to ignore
when doing filename
completion.

749

Variable Chapter Type Description

GLOBIGNORE L
A list of patterns defining
filenames to ignore during
pathname expansion.

GROUPS AR
An array containing a list
of groups of which the
current user is a member.

IFS 7

The Internal Field
Separator: a list of
characters that act as word
separators. Normally set to
SPACE, TAB, and
NEWLINE.

HISTCMD 3 U The history number of the
current command.

HISTCONTROL 3

A list of patterns,
separated by colons (:),
which can have the
following values.

750

Variable Chapter Type Description

ignorespace: lines
beginning with a space are
not entered into the history
list. ignoredups: lines
matching the last history
line are not entered.
erasedups: all previous
lines matching the current
line to are removed from
the history list before the
line is saved. ignoreboth:
enables both ignorespace
and ignoredups.

HISTFILE 2 The name of the command
history file.

HISTIGNORE 3
A list of patterns to decide
what should be retained in
the history list.

HISTSIZE 2 The number of lines kept
in the command history.

751

Variable Chapter Type Description

HISTFILESIZE 3
The maximum number of
lines kept in the history
file.

HISTTIMEFORMAT 3

If set and not null, its
value is used as a format
string for strftime(3) to
print the time stamp
associated with each
history entry displayed by
the history builtin. If this
variable is set, time stamps
are written to the history
file so they may be
preserved across shell
sessions.

HOME 3 The home (login)
directory.

HOSTFILE 3 The file to be used for
hostname completion.

752

Variable Chapter Type Description

HOSTNAME The name of the current
host.

HOSTTYPE 3 The type of machine bash
is running on.

IGNOREEOF 3
The number of EOF
characters received before
exiting an interactive shell.

INPUTRC 2 The readline startup file.

LANG

Used to determine the
locale category for any
category not specifically
selected with a variable
starting with LC_.

LC_ALL Overrides the value of
LANG and any other LC_

753

Variable Chapter Type Description

variable specifying a
locale category.

LC_COLLATE

Determines the collation
order used when sorting
the results of pathname
expansion.

LC_CTYPE

Determines the
interpretation of characters
and the behavior of
character classes within
pathname expansion and
pattern matching.

LC_MESSAGES

This variable determines
the locale used to translate
double-quoted strings
preceded by a $.

754

Variable Chapter Type Description

LC_NUMERIC
Determines the locale
category used for number
formatting.

LINENO 9 U
The number of the line
that just ran in a script or
function.

MACHTYPE
A string describing the
system on which bash is
executing.

MAIL 3 The name of the file to
check for new mail.

MAILCHECK 3 How often (in seconds) to
check for new mail.

MAILPATH 3 L
A list of file names to
check for new mail, if
MAIL is not set.

755

Variable Chapter Type Description

OLDPWD 3 The previous working
directory.

OPTARG 6
The value of the last
option argument processed
by getopts.

OPTERR 6 If set to 1, display error
messages from getopts.

OPTIND 6 The number of the first
argument after options.

OSTYPE The operating system on
which bash is executing.

PATH 3 L The search path for
commands.

756

Variable Chapter Type Description

PIPESTATUS 6 A

An array variable
containing a list of exit
status values from the
processes in the most
recently executed
foreground pipeline.

POSIXLY_CORRECT

If in the environment when
bash starts, the shell enters
posix mode before reading
the startup files, as if the
—posix invocation option
had been supplied. If it is
set while the shell is
running, bash enables
posix mode, as if the
command set -o posix had
been executed.

PROMPT_COMMAND
The value is executed as a
command before the
primary prompt is issued.

757

Variable Chapter Type Description

PS1 3 The primary command
prompt string.

PS2 3 The prompt string for line
continuations.

PS3 5 The prompt string for the
select command.

PS4 9 The prompt string for the
xtrace option.

PPID 8 R The process ID of the
parent process.

PWD 3 The current working
directory.

758

Variable Chapter Type Description

RANDOM 9 U
A random number
between 0 and 32767
(215-1).

REPLY 5, 7

The user's response to the
select command; result of
the read command if no
variable names are given.

SECONDS 3 U
The number of seconds
since the shell was
invoked.

SHELL 3 The full pathname of the
shell.

SHELLOPTS LR A list of enabled shell
options.

759

Variable Chapter Type Description

SHLVL
Incremented by one each
time an instance of bash is
invoked.

TIMEFORMAT

Specifies the format for
the output from using the
time reserved word on a
command pipeline.

TMOUT 10

If set to a positive integer,
the number of seconds
after which the shell
automatically terminates if
no input is received.

UID R The user ID of the current
user.

auto_resume Controls how job control
works.

760

Variable Chapter Type Description

histchars

Specifies what to use as
the history control
characters. Normally set to
the string `!^#'.

761

Test Operators
Table B-6 lists the operators that are used with test and
the [...] and [[...]] constructs. They can be logically
combined with -a ("and") and -o ("or") and grouped with
escaped parenthesis (\(... \)). The string comparisons <
and > and the [[...]] construct are not available in versions
of bash prior to 2.0.

Table B-6. Test operators

Operator True if...

-a file file exists

-b file file exists and is a block device file

-c file file exists and is a character device file

-d file file exists and is a directory

-e file file exists; same as -a

762

Operator True if...

-f file file exists and is a regular file

-g file file exists and has its setgid bit set

-G file file exists and is owned by the effective
group ID

-h file file exists and is a symbolic link

-k file file exists and has its sticky bit set

-L file file exists and is a symbolic link

-n string string is non-null

-N file file was modified since it was last read

763

Operator True if...

-O file file exists and is owned by the effective
user ID

-p file file exists and is a pipe or named pipe
(FIFO file)

-r file file exists and is readable

-s file file exists and is not empty

-S file file exists and is a socket

-t N File descriptor N points to a terminal

-u file file exists and has its setuid bit set

-w file file exists and is writeable

764

Operator True if...

-x file file exists and is executable, or file is a
directory that can be searched

-z string string has a length of zero

fileA -nt
fileB fileA modification time is newer than fileB

fileA -ot
fileB fileA modification time is older than fileB

fileA -ef
fileB fileA and fileB point to the same file

stringA =
stringB stringA equals stringB (POSIX version)

stringA ==
stringB stringA equals stringB

765

Operator True if...

stringA !=
stringB stringA does not match stringB

stringA =~
regexp

stringA matches the extended regular
expression regexp[3]

stringA <
stringB

stringA sorts before stringB
lexicographically

stringA >
stringB

stringA sorts after stringB
lexicographically

exprA -eq
exprB

Arithmetic expressions exprA and exprB
are equal

exprA -ne
exprB

Arithmetic expressions exprA and exprB
are not equal

exprA -lt
exprB exprA is less than exprB

766

Operator True if...

exprA -gt
exprB exprA is greater than exprB

exprA -le
exprB exprA is less than or equal to exprB

exprA -ge
exprB exprA is greater than or equal to exprB

exprA -a
exprB exprA is true and exprB is true

exprA -o
exprB exprA is true or exprB is true

[3] Only available in bash version 3.0 and later. May
only be used inside [[...]].

767

set Options
Table B-7 lists the options that can be turned on with the
set - arg command. All are initially off except where
noted. Full Names, where listed, are arguments to set that
can be used with set -o. The Full Names braceexpand,
histexpand, history, keyword, and onecmd are not
available in versions of bash prior to 2.0. Also, in those
versions, hashing is switched with -d.

Table B-7. Options to set

Option Full name Meaning

-a allexport Export all subsequently defined
or modified variables.

-B braceexpand The shell performs brace
expansion. This is on by default.

-b notify Report the status of terminating
background jobs immediately.

768

Option Full name Meaning

-C noclobber Don't allow redirection to
overwrite existing files.

-E errtrace

Any trap on ERR is inherited by
shell functions, command
substitutions, and commands
executed in a subshell
environment.

-e errexit

Exit the shell when a simple
command exits with non-zero
status. A simple command is a
command not part of a while,
until, or if; or part of a && or ||
list; or a command whose return
value is inverted by !.

emacs Use emacs-style command-line
editing.

-f noglob Disable pathname expansion.

769

Option Full name Meaning

-H histexpand
Enable ! style history
substitution. On by default in an
interactive shell.

history Enable command history. On by
default in interactive shells.

-h hashall Disable the hashing of
commands.

ignoreeof Disallow CTRL-D to exit the
shell.

-k keyword Place keyword arguments in the
environment for a command.

-m monitor Enable job control (on by
default in interactive shells).

770

Option Full name Meaning

-n noexec
Read commands and check
syntax but do not execute them.
Ignored for interactive shells.

-P physical

Do not follow symbolic links on
commands that change the
current directory. Use the
physical directory.

-p privileged Script is running in suid mode.

pipefail

The return value of a pipeline is
the value of the last (rightmost)
command to exit with a
non-zero status, or zero if all
commands in the pipeline exit
successfully. This option is
disabled by default.

posix
Change the default behavior to
that of POSIX 1003.2 where it
differs from the standard.

771

Option Full name Meaning

-T functrace

Any trap on DEBUG is
inherited by shell functions,
command substitutions, and
commands executed in a
subshell environment.

-t onecmd Exit after reading and executing
one command.

-u nounset Treat undefined variables as
errors, not as null.

-v verbose Print shell input lines before
running them.

vi Use vi-style command-line
editing.

-x xtrace
Print commands (after
expansions) before running
them.

772

Option Full name Meaning

-

Signals the end of options. All
remaining arguments are
assigned to the positional
parameters. -x and -v are turned
off. If there are no remaining
arguments to set, the positional
arguments remain unchanged.

—

With no arguments following,
unset the positional parameters.
Otherwise, the positional
parameters are set to the
following arguments (even if
they begin with -).

773

shopt Options
The shopt options are set with shopt -s arg and unset
with shopt -u arg. See Table B-8 for options to shopt.
Versions of bash prior to 2.0 had environment variables
to perform some of these settings. Setting them equated to
shopt -s.

The variables (and corresponding shopt options) were:
allow_null_glob_expansion (nullglob), cdable_vars
(cdable_vars), command_oriented_history (cmdhist),
glob_dot_filenames (dotglob), no_exit_on_failed_exec
(execfail). These variables no longer exist.

The options extdebug, failglob, force_fignore, and
gnu_errfmt are not available in versions of bash prior to
3.0.

Table B-8. Options to shopt

Option Meaning if set

cdable_vars
An argument to cd that is
not a directory is assumed
to be the name of a

774

Option Meaning if set

variable whose value is
the directory to change to.

cdspell

Minor errors in the
spelling of a directory
supplied to the cd
command will be
corrected if there is a
suitable match. This
correction includes
missing letters, incorrect
letters, and letter
transposition. It works for
interactive shells only.

checkhash

Commands found in the
hash table are checked for
existence before being
executed and
non-existence forces a
PATH search.

775

Option Meaning if set

checkwinsize

Checks the window size
after each command and,
if it has changed, updates
the variables LINES and
COLUMNS accordingly.

cmdhist
Attempt to save all lines
of a multiline command in
a single history entry.

dotglob
Filenames beginning with
a . are included in
pathname expansion.

execfail

A non-interactive shell
will not exit if it cannot
execute the argument to
an exec. Interactive shells
do not exit if exec fails.

expand_aliases Aliases are expanded.

776

Option Meaning if set

extdebug

Behavior intended for use
by debuggers is enabled.
This includes: the -F
option of declare displays
the source filename and
line number
corresponding to each
function name supplied as
an argument; if the
command run by the
DEBUG trap returns a
non-zero value, the next
command is skipped and
not executed; and if the
command run by the
DEBUG trap returns a
value of 2, and the shell is
executing in a subroutine,
a call to return is
simulated.

extglob
Extended pattern
matching features are
enabled.

777

Option Meaning if set

failglob

Patterns which fail to
match filenames during
pathname expansion
result in an expansion
error.

force_fignore

The suffixes specified by
the FIGNORE shell
variable cause words to be
ignored when performing
word completion even if
the ignored words are the
only possible
completions.

gnu_errfmt

Shell error messages are
written in the standard
GNU error message
format.

histappend
The history list is
appended to the file
named by the value of the

778

Option Meaning if set

variable HISTFILE when
the shell exits, rather than
overwriting the file.

histreedit

If readline is being used,
the opportunity is given
for re-editing a failed
history substitution.

histverify

If readline is being used,
the results of history
substitution are not
immediately passed to the
shell parser. Instead, the
resulting line is loaded
into the readline editing
buffer, allowing further
modification.

hostcomplete

If readline is being used,
an attempt will be made
to perform hostname
completion when a word

779

Option Meaning if set

beginning with @ is being
completed.

huponexit

bash will send SIGHUP
to all jobs when an
interactive login shell
exits.

interactive_comments

Allows a word beginning
with # and all subsequent
characters on the line to
be ignored in an
interactive shell.

lithist

If the cmdhist option is
enabled, multiline
commands are saved to
the history with
embedded newlines rather
than using semicolon
separators where possible.

780

Option Meaning if set

login_shell
If bash is started as a
login shell. This is a
read-only value.

mailwarn

If the file being checked
for mail has been
accessed since the last
time it was checked, the
message "The mail in
mailfile has been read" is
displayed.

no_empty_cmd_completion

If readline is being used,
no attempt will be made
to search the PATH for
possible completions
when completion is
attempted on an empty
line.

nocaseglob bash matches filenames in
a case-insensitive fashion

781

Option Meaning if set

when performing
pathname expansion.

nullglob

Allows patterns which
match no files to expand
to null strings rather than
to themselves.

progcomp
Programmable
completion facilities are
enabled. Default is on.

promptvars

Prompt strings undergo
variable and parameter
expansion after being
expanded.

restricted_shell
Set if the shell is started in
restricted mode. The
value cannot be changed.

782

Option Meaning if set

shift_verbose

The shift built-in prints an
error if it has shifted past
the last positional
parameter.

sourcepath

The source built-in uses
the value of PATH to
find the directory
containing the file
supplied as an argument.

xpg_echo
echo expands
backslash-escape
sequences by default.

783

I/O Redirection
Table B-9 shows a complete list of I/O redirectors. (This
table is also included earlier as Table 7-1.) Note that there
are two formats for specifying standard output and error
redirection: &>file and >&file. The second of these, and
the one used throughout this book, is the preferred way.

Table B-9. I/O redirectors

Redirector Function

cmd1 |
cmd2

Pipe; take standard output of cmd1 as
standard input to cmd2

> file Direct standard output to file

< file Take standard input from file

>> file Direct standard output to file; append to
file if it already exists

784

Redirector Function

>| file Force standard output to file even if
noclobber is set

n>| file Force output to file from file descriptor n
even if noclobber set

<> file Use file as both standard input and
standard output

n<> file Use file as both input and output for file
descriptor n

<< label Here-document

n > file Direct file descriptor n to file

n < file Take file descriptor n from file

785

Redirector Function

>> file Direct file descriptor n to file; append to
file if it already exists

n>& Duplicate standard output to file descriptor
n

n<& Duplicate standard input from file
descriptor n

n>&m File descriptor n is made to be a copy of
the output file descriptor

n<&m File descriptor n is made to be a copy of
the input file descriptor

&> file Directs standard output and standard error
to file

<&- Close the standard input

786

Redirector Function

>&- Close the standard output

n>&- Close the output from file descriptor n

n<&- Close the input from file descriptor n

n>&word

If n is not specified, the standard output
(file descriptor 1) is used; if the digits in
word do not specify a file descriptor open
for output, a redirection error occurs; as a
special case, if n is omitted, and word does
not expand to one or more digits, the
standard output and standard error are
redirected as described previously

n<&word

If word expands to one or more digits, the
file descriptor denoted by n is made to be
a copy of that file descriptor; if the digits
in word do not specify a file descriptor
open for input, a redirection error occurs;
if word evaluates to -, file descriptor n is

787

Redirector Function

closed; if n is not specified, the standard
input (file descriptor 0) is used

n>&digit-
Moves the file descriptor digit to file
descriptor n, or the standard output (file
descriptor 1) if n is not specified

n<&digit-

Moves the file descriptor digit to file
descriptor n, or the standard input (file
descriptor 0) if n is not specified; digit is
closed after being duplicated to n

788

emacs Mode
Commands
Table B-10 shows a complete list of emacs editing mode
commands.

Table B-10. emacs mode commands

Command Meaning

CTRL-A Move to beginning of line

CTRL-B Move backward one character

CTRL-D Delete one character forward

CTRL-E Move to end of line

CTRL-F Move forward one character

789

Command Meaning

CTRL-G Abort the current editing command and
ring the terminal bell

CTRL-J Same as RETURN

CTRL-K Delete (kill) forward to end of line

CTRL-L Clear screen and redisplay the line

CTRL-M Same as RETURN

CTRL-N Next line in command history

CTRL-O Same as RETURN, then display next
line in history file

CTRL-P Previous line in command history

790

Command Meaning

CTRL-R Search backward

CTRL-S Search forward

CTRL-T Transpose two characters

CTRL-U Kill backward from point to the
beginning of line

CTRL-V Make the next character typed verbatim

CTRL-V
TAB Insert a TAB

CTRL-W Kill the word behind the cursor, using
whitespace as the boundary

CTRL-X / List the possible filename completions
of the current word

791

Command Meaning

CTRL-X ~ List the possible username completions
of the current word

CTRL-X $ List the possible shell variable
completions of the current word

CTRL-X @ List the possible hostname completions
of the current word

CTRL-X ! List the possible command name
completions of the current word

CTRL-X (Begin saving characters into the current
keyboard macro

CTRL-X) Stop saving characters into the current
keyboard macro

CTRL-X e Re-execute the last keyboard macro
defined

792

Command Meaning

CTRL-X
CTRL-R

Read in the contents of the readline
initialization file

CTRL-X
CTRL-V

Display version information on this
instance of bash

CTRL-Y Retrieve (yank) last item killed

DEL Delete one character backward

CTRL-[Same as ESC (most keyboards)

ESC-B Move one word backward

ESC-C Change word after point to all capital
letters

ESC-D Delete one word forward

793

Command Meaning

ESC-F Move one word forward

ESC-L Change word after point to all
lowercase letters

ESC-N Non-incremental forward search

ESC-P Non-incremental reverse search

ESC-R Undo all the changes made to this line

ESC-T Transpose two words

ESC-U Change word after point to all
uppercase letters

ESC-CTRL-E Perform shell alias, history, and word
expansion on the line

794

Command Meaning

ESC-CTRL-H Delete one word backward

ESC-CTRL-Y
Insert the first argument to the previous
command (usually the second word) at
point

ESC-DEL Delete one word backward

ESC-^ Perform history expansion on the line

ESC-< Move to first line of history file

ESC-> Move to last line of history file

ESC-. Insert last word in previous command
line after point

ESC-_ Same as above

795

Command Meaning

TAB Attempt filename completion on
current word

ESC-? List the possible completions of the text
before point

ESC-/ Attempt filename completion on
current word

ESC-~ Attempt username completion on
current word

ESC-$ Attempt variable completion on current
word

ESC-@ Attempt hostname completion on
current word

ESC-! Attempt command name completion on
current word

796

Command Meaning

ESC-TAB Attempt completion from text in the
command history

ESC-~ Attempt tilde expansion on the current
word

ESC-\ Delete all the spaces and TABs around
point

ESC-* Insert all of the completions that would
be generated by ESC-= before point

ESC-= List the possible completions before
point

ESC-{
Attempt filename completion and
return the list to the shell enclosed
within braces

797

vi Control Mode
Commands
Table B-11 shows a complete list of all vi control mode
commands.

Table B-11. vi control mode commands

Command Meaning

h Move left one character

l Move right one character

w Move right one word

b Move left one word

W Move to beginning of next non-blank word

798

Command Meaning

B Move to beginning of preceding non-blank
word

e Move to end of current word

E Move to end of current non-blank word

0 Move to beginning of line

. Repeat the last a insertion.

^ Move to first non-blank character in line

$ Move to end of line

i Insert text before current character

a Insert text after current character

799

Command Meaning

I Insert text at beginning of line

A Insert text at end of line

R Overwrite existing text

dh Delete one character backward

dl Delete one character forward

db Delete one word backward

dw Delete one word forward

dB Delete one non-blank word backward

dW Delete one non-blank word forward

800

Command Meaning

d$ Delete to end of line

d0 Delete to beginning of line

D Equivalent to d$ (delete to end of line)

dd Equivalent to 0d$ (delete entire line)

C Equivalent to c$ (delete to end of line,
enter input mode)

cc Equivalent to 0c$ (delete entire line, enter
input mode)

x Equivalent to dl (delete character
forwards)

X Equivalent to dh (delete character
backwards)

801

Command Meaning

k or - Move backward one line

j or + Move forward one line

G Move to line given by repeat count

/ string Search forward for string

? string Search backward for string

n Repeat search forward

N Repeat search backward

f x Move right to next occurrence of x

F x Move left to previous occurrence of x

802

Command Meaning

t x Move right to next occurrence of x, then
back one space

T x Move left to previous occurrence of x, then
forward one space

; Redo last character finding command

, Redo last character finding command in
opposite direction

\ Do filename completion

* Do wildcard expansion (onto command
line)

\= Do wildcard expansion (as printed list)

803

Command Meaning

~ Invert (twiddle) case of current
character(s)

_ Append last word of previous command,
enter input mode

CTRL-L Start a new line and redraw the current line
on it

Prepend # (comment character) to the line
and send it to history

804

Appendix C. Loadable
Built-Ins
bash 2.0 introduced a new feature that increased the
flexibility of the shell: dynamically loadable built-ins. On
systems that support dynamic loading, you can write your
own built-ins in C, compile them into shared objects, and
load them at any time from within the shell with the
enable built-in (see Chapter 7 for details on all of the
enable options).

This appendix will discuss briefly how to go about
writing a built-in and loading it in bash. The discussion
assumes that you have experience with writing,
compiling, and linking C programs.

The bash archive contains a number of pre-written
built-ins in the directory examples/loadables/. You can
build them by uncommenting the lines in the file Makefile
that are relevant to your system, and typing make. We'll
take one of these built-ins, tty, and use it as a "case
study" for built-ins in general.

tty will mimic the standard UNIX command tty. It will
print the name of the terminal that is connected to
standard input. The built-in will, like the command,
return true if the device is a TTY and false if it isn't. In
addition, it will take an option, -s, which specifies that it

805

should work silently, i.e., print nothing and just return a
result.

The C code for a built-in can be divided into three distinct
sections: the code that implements the functionality of the
built-in, a help text message definition, and a structure
describing the built-in so that bash can access it.

The description structure is quite straightforward and
takes the form:

struct builtin structname = {
"builtin_name",
function_name,
BUILTIN_ENABLED,
help_array,
"usage",
0

};

builtin_name is the name of the built-in as it appears in
bash. The next field, function-name, is the name of the C
function that implements the built-in. We'll look at this in
a moment. BUILTIN_ENABLED is the initial state of the
built-in, whether it is enabled or not. This field should
always be set to BUILTIN_ENABLED. help_array is an
array of strings which are printed when help is used on
the built-in. usage is the shorter form of help; the
command and its options. The last field in the structure
should be set to 0.

806

In our example we'll call the built-in tty, the C function
tty_builtin, and the help array tty_doc. The usage string
will be tty [-s]. The resulting structure looks like this:

struct builtin tty_struct = {
"tty",
tty_builtin,
BUILTIN_ENABLED,
tty_doc,
"tty [-s]",
0

};

The next section is the code that does the work. It looks
like this:

tty_builtin (list)
WORD_LIST *list;

{
int opt, sflag;
char *t;

reset_internal_getopt ();
sflag = 0;
while ((opt = internal_getopt (list, "s")) != -1)
{

switch (opt)
{

case 's':
sflag = 1;
break;

default:
builtin_usage ();
return (EX_USAGE);

}
}
list = loptend;

807

t = ttyname (0);
if (sflag == 0)

puts (t ? t : "not a tty");
return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE);

}

Built-in functions are always given a pointer to a list of
type WORD_LIST. If the built-in doesn't actually take
any options, you must call no_options(list) and check its
return value before any further processing. If the return
value is non-zero, your function should immediately
return with the value EX_USAGE.

You must always use internal_getopt rather than the
standard C library getopt to process the built-in options.
Also, you must reset the option processing first by calling
reset_internal_getopt.

Option processing is performed in the standard way,
except if the options are incorrect, in which case you
should return EX_USAGE. Any arguments left after
option processing are pointed to by loptend. Once the
function is finished, it should return the value
EXECUTION_SUCCESS or EXECUTION_FAILURE.

In the case of our tty built-in, we then just call the
standard C library routine ttyname, and if the -s option
wasn't given, print out the name of the tty (or "not a tty" if
the device wasn't). The function then returns success or
failure, depending upon the result from the call to
ttyname.

808

The last major section is the help definition. This is
simply an array of strings, the last element of the array
being NULL. Each string is printed to standard output
when help is run on the built-in. You should, therefore,
keep the strings to 76 characters or less (an 80-character
standard display minus a 4-character margin). In the case
of tty, our help text looks like this:

char *tty_doc[] = {
"tty writes the name of the terminal that is opened for standard",
"input to standard output. If the `-s' option is supplied, nothing",
"is written; the exit status determines whether or not the standard",
"input is connected to a tty.",
(char *)NULL

};

The last things to add to our code are the necessary C
header files. These are stdio.h and the bash header files
config.h, builtins.h, shell.h, and bashgetopt.h.

Here is the C program in its entirety:

#include "config.h"
#include <stdio.h>
#include "builtins.h"
#include "shell.h"
#include "bashgetopt.h"

extern char *ttyname ();

tty_builtin (list)
WORD_LIST *list;

{
int opt, sflag;

809

char *t;

reset_internal_getopt ();
sflag = 0;
while ((opt = internal_getopt (list, "s")) != -1)
{

switch (opt)
{

case 's':
sflag = 1;
break;

default:
builtin_usage ();
return (EX_USAGE);

}
}
list = loptend;

t = ttyname (0);
if (sflag == 0)

puts (t ? t : "not a tty");
return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE);

}

char *tty_doc[] = {
"tty writes the name of the terminal that is opened for standard",
"input to standard output. If the `-s' option is supplied, nothing",
"is written; the exit status determines whether or not the standard",
"input is connected to a tty.",
(char *)NULL

};

struct builtin tty_struct = {
"tty",
tty_builtin,
BUILTIN_ENABLED,
tty_doc,

810

"tty [-s]",
0

};

We now need to compile and link this as a dynamic
shared object. Unfortunately, different systems have
different ways to specify how to compile dynamic shared
objects. Table C-1 lists some common systems and the
commands needed to compile and link tty.c. Replace
archive with the path of the top level of the bash archive.

Table C-1. Shared object compilation

System Commands

SunOS 4 cc -pic -Iarchive -Iarchive/builtins
-Iarchive/lib -c tty.c

ld -assert pure-text -o tty tty.o

SunOS 5 cc -K pic -Iarchive -Iarchive/builtins
-Iarchive/lib -c tty.c

cc -dy -z text -G -i -h tty -o tty tty.o

811

System Commands

SVR4,
SVR4.2, Irix

cc -K PIC -Iarchive -Iarchive/builtins
-Iarchive/lib -c tty.c

ld -dy -z text -G -h tty -o tty tty.o

AIX cc -K -Iarchive -Iarchive/builtins
-Iarchive/lib -c tty.c

ld -bdynamic -bnoentry -bexpall -G -o
tty tty.o

Linux cc -fPIC -Iarchive -Iarchive/builtins
-Iarchive/lib -c tty.c

ld -shared -o tty tty.o

NetBSD,
FreeBSD

cc -fpic -Iarchive -Iarchive/builtins
-Iarchive/lib -c tty.c

812

System Commands

ld -x -Bshareable -o tty tty.o

After you have compiled and linked the program, you
should have a shared object called tty. To load this into
bash, just type enable -f path/ tty tty, where path is the
full pathname of the shared object. You can remove a
loaded built-in at any time with the -d option, e.g., enable
-d tty.

You can put as many built-ins as you like into one shared
object; all you need are the three main sections that we
saw above for each built-in in the same C file. It is best,
however, to keep the number of built-ins per shared
object small. You will also probably find it best to keep
similar built-ins, or built-ins that work together (e.g.,
pushd, popd, dirs), in the same shared object.

bash loads a shared object as a whole, so if you ask it to
load one built-in from a shared object that has twenty
built-ins, it will load all 20 (but only one will be enabled).
For this reason, keep the number of built-ins small to save
loading memory with unnecessary things, and group
similar built-ins so that if the user enables one of them, all
of them will be loaded and ready in memory for enabling.

813

Appendix D. Programmable
Completion
Programmable completion is a feature that was
introduced in bash 2.0.[1] It extends the built-in textual
completion that is discussed in Chapter 2 by providing
hooks into the completion mechanism. This means that it
is possible to write virtually any form of completion
desired. For instance, if you were typing the man
command, wouldn't it be nice to be able to hit TAB and
have the manual sections listed for you. Programmable
completion allows you to do this and much more.

This Appendix will only look at the basics of
programmable completion. While completion is a feature
you are very likely to use in everyday shell operation, you
are unlikely to need to delve into the inner depths and
actually write your own completion code. Fortunately the
feature has been around for some time and there are
already several libraries of completion commands
developed by other people. We'll just outline the basic
commands and procedures needed to use the completion
mechanism should you ever need to work on it yourself.

In order to be able to do textual completion in a particular
way you first have to tell the shell how to do it when you
press the TAB key. This is done via the complete
command.

814

The main argument of complete is a name that can be the
name of a command or anything else that you want
textual completion to work with. As an example we will
look at the gunzip command that allows compressed
archives of various types to be uncompressed. Normally,
if you were to type:[2]

$ gunzip [TAB][TAB]

you would get a list of filenames from which to complete.
This list will include all kinds of things that are unsuitable
for the gunzip command. What we really would like is
the subset of those files that are suitable for the command
to work on. We can set this up by using complete:[3]

complete -A file -X '!*.@(Z|gz|tgz)' gunzip

Here we are telling completion mechanism that when the
gunzip command is typed in we want it to do something
special. The -A flag is an action and takes a variety of
arguments. In this case we provide file as the argument,
which asks the mechanism to provide a list of files as
possible completions. The next step is to cut this down by
selecting only the files that we know will work with
gunzip. We've done this with the -X option, which takes
as its argument a filter pattern. When applied to the
completion list the filter removes anything matching the
pattern, i.e., the result is everything that doesn't match the
pattern. gunzip can uncompress a number of file types
including those with the extensions .Z, .gz, and .tgz. We
want to match all filenames with extensions that have one

815

of these three patterns. We then have to negate this with a
! (remember, the filter removes the patterns that match).

We can actually try this out first and see what
completions would be returned without having to install
the completion with complete. We can do this via the
compgen command:

compgen -A file -X '!*.@(Z|gz|tgz)'

This produces a list of completion strings (assuming you
have some files in the current directory with these
extensions). compgen is useful for trying out filters to see
what completion strings are produced. It is also needed
when more complex completion is required. We'll see an
example of this later in the Appendix.

Once we install the complete command above, either by
sourcing a script with it in or executing it on the
command line, we can use the augmented completion
mechanism with the gunzip command:

$gunzip [TAB][TAB]
archive.tgz archive1.tgz file.Z
$gunzip

You can probably see that there are other things we could
do. What about providing a list of possible arguments for
specific options to a command? For instance, the kill
command can takes a process ID but can optionally take a
signal name preceded by a dash (-) or a signal name
following the option -n. We should be able to complete

816

with PIDs but, if there is a dash or a -n, with signal
names.

This is slightly more complex than the one-line example
above. Here we will need some code to distinguish what
has already been typed in. We'll also need to get the PIDs
and the signal names. We'll put the code in a function and
call the function via the completion mechanism. Here's
the code to call our function, which we'll name _kill:

complete -F _kill kill

The -F option to complete tells it to call the function
named _kill when it is performing textual completion for
the kill command. The next step is to code the function:

_kill()
{

local cur
local sign

COMPREPLY=()
cur=${COMP_WORDS[COMP_CWORD]}
if (($COMP_CWORD == 2)) && [[${COMP_WORDS[1]} == -n]]; then

return list of available signals
_signals

elif (($COMP_CWORD == 1)) && [["$cur" == -*]]; then
return list of available signals
sign="-"
_signals
else

return list of available PIDs
COMPREPLY=($(compgen -W '$(command ps axo pid | sed 1d)' $cur))

fi
}

817

The code is fairly standard apart from the use of some
special environment variables and a call to a function
called _signals, which we'll come to shortly.

The variable COMPREPLY is used to hold the result that
is returned back to the completion mechanism. It is an
array that holds a set of completion strings. Initially this
is set to an empty array.

The local variable cur is a convenience variable to make
the code more readable because the value is used in
several places. Its value is derived from an element in the
array COMP_WORDS. This array holds the individual
words on the current command line. COMP_CWORD is
an index into the array; it gives the word containing the
current cursor position. The value of cur is the word
currently containing the cursor.

The first if statement tests for the condition where the kill
command is followed by the -n option. If the first word
was -n and we are on the second word, then we need to
provide a list of signal names for the completion
mechanism.

The second if statement is similar, except this time we are
looking to complete on the current word, which starts
with a dash and is followed by anything else. The body of
this if again calls _signals but this time it sets the sign
variable to a dash. The reason for this will become
obvious when we look at the _signals function.

818

The remaining part in the else block returns a list of
process IDs. This uses the compgen command to help in
creating the array of completion strings. First it runs the
ps command to obtain a list of PIDs and then pipes the
result through sed to remove the first line (which is the
heading "PID").[4] This is then given as an argument to
the -W option of compgen, which takes a word list.
compgen then returns all completion strings that match
the value of the variable cur and the resulting array is
assigned to COMPREPLY.

compgen is important here because we can't just return
the complete list of PIDs provided by ps. The user may
have already typed part of a PID and then attempted
completion. As the partial PID will be in the variable cur,
compgen restricts the results to those that match or
partially match that value. For example if cur had the
value 5 then compgen would return only values
beginning with a "5", such as 5, 59 or 562.

The last piece of the puzzle is the _signals function:

_signals()
{

local i
COMPREPLY=($(compgen -A signal SIG${cur#-}))
for ((i=0; i < ${#COMPREPLY[@]}; i++)); do

COMPREPLY[i]=$sign${COMPREPLY[i]#SIG}
done

}

While we can get a list of signal names by using
complete -A signal, the names are unfortunately not in a

819

form that is very usable and so we can't use this to
directly generate the array of names. The names
generated begin with the letters "SIG" while the names
needed by the kill command don't. The _signal function
should assign to COMPREPLY an array of signal names,
optionally preceded by a dash.

First we generate the list of signal names with compgen.
Each name starts with the letters "SIG". In order to get
complete to provide the correct subset if the user has
begun to type a name, we add "SIG" to the beginning of
the value in cur. We also take the opportunity to remove
any preceding dash that the value has so it will match.

We then loop on the array removing the letters "SIG" and
adding a dash if needed (the value of the variable sign) to
each entry.

Both complete and compgen have many other options
and actions; far more than we can cover in a few simple
exercises. If you are interested in taking programmable
completion further, we recommend looking in the bash
manual and downloading some of the many examples that
are available on the Internet or in the bash archive under
bash-3.0\examples\complete.

As you can see, textual completion can get quite involved
and creating the necessary code can be time-consuming.
Fortunately there are already completion libraries
available for bash. One of these is the bash Completion

820

Project, which can be found at http://freshmeat.net/
projects/bashcompletion/ .

[1] Technically it was added in bash Version 2.04.

[2] For the rest of this Appendix we will denote typing a
TAB character as [TAB].

[3] In order for @(...) to work you will need extended
pattern matching switched on (shopt -s extglob).

[4] On AIX and Solaris you will have to use the command
ps -efo pid.

821

Colophon
Our look is the result of reader comments, our own
experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and
life into potentially dry subjects.

The animal on the cover of Learning the bash Shell, Third
Edition, is a silver bass, one of the 400-500 species of sea
bass. The silver bass, also known as the white perch, is
found in freshwater bays and river mouths along the
Atlantic coast of North America from Nova Scotia to
South Carolina, and is most abundant in the Chesapeake
region. Silver bass live in large schools and feed on small
fishes and crustaceans. Although many bass never stray
far from one place their whole lives, silver bass swim
upstream to spawn, often becoming landlocked in the
process. Like most bass, the s\ ilver bass is attracted to
bright, shiny objects, and can be drawn quite close to
swimmers and divers in this way.

Colleen Gorman was the production editor and
copyeditor for Learning the bash Shell, Third Edition .
MaryAnne Weeks Mayo, Lydia Onofrei, and Emily Quill
provided quality control. Peter Ryan provided production
assistance. Angela Howard wrote the index.

822

Edie Freedman designed the cover of this book. The
cover image is a 19th-century engraving from the Dover
Pictorial Archive. Karen Montgomery produced the cover
layout with Adobe InDesign CS using Adobe's ITC
Garamond font.

David Futato designed the interior layout. This book was
converted by Judy Hoer to FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason
McIntosh, Neil Walls, and Mike Sierra that uses Perl and
XML technologies. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code
font is LucasFont's TheSans Mono Condensed. The
illustrations that appear in the book were created by Chris
Reilley and updated for the third edition by Robert
Romano, Jessamyn Read, and Lesley Borash using
Macromedia FreeHand MX and Adobe Photoshop CS.
This colophon was written by Clairemarie Fisher
O'Leary.

The online edition of this book was created by the Digital
Books production group (John Chodacki, Ken Douglass,
and Ellie Cutler) using a set of Frame-to-XML
conversion and cleanup tools written and maintained by
Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and
Jeff Liggett.

823

	Learning the bash Shell, 3rd Edition
	Summary of bash Features
	Intended Audience
	Code Examples
	Chapter Summary
	Conventions Used in This Handbook
	We&d Like to Hear from You
	Using Code Examples
	Safari Enabled
	Acknowledgments for the First Edition
	Acknowledgments for the Second Edition
	Acknowledgments for the Third Edition
	1. bash Basics
	1.2. Scope of This Book
	1.3. History of UNIX Shells
	1.3.2. Features of bash
	1.4. Getting bash
	1.5. Interactive Shell Use
	1.6. Files
	1.6.1.2. Tilde notation
	1.6.1.3. Changing working directories
	1.6.2. Filenames, Wildcards, and Pathname Expansion
	1.6.3. Brace Expansion
	1.7. Input and Output
	1.7.2. I/O Redirection
	1.7.3. Pipelines
	1.8. Background Jobs
	1.8.2. Background Jobs and Priorities
	1.9. Special Characters and Quoting
	1.9.2. Backslash-Escaping
	1.9.3. Quoting Quotation Marks
	1.9.4. Continuing Lines
	1.9.5. Control Keys
	1.10. Help
	2. Command-Line Editing
	2.2. The History List
	2.3. emacs Editing Mode
	2.3.2. Word Commands
	2.3.3. Line Commands
	2.3.4. Moving Around in the History List
	2.3.5. Textual Completion
	2.3.6. Miscellaneous Commands
	2.4. vi Editing Mode
	2.4.2. Entering and Changing Text
	2.4.3. Deletion Commands
	2.4.4. Moving Around in the History List
	2.4.5. Character-Finding Commands
	2.4.6. Textual Completion
	2.4.7. Miscellaneous Commands
	2.5. The fc Command
	2.6. History Expansion
	2.7. readline
	2.7.2. Key Bindings Using bind
	2.8. Keyboard Habits
	3. Customizing Your Environment
	3.2. Aliases
	3.3. Options
	3.4. Shell Variables
	3.4.2. Built-In Variables
	3.4.2.2. Mail variables
	3.4.2.3. Prompting variables
	3.4.2.4. Command search path
	3.4.2.5. Command hashing
	3.4.2.6. Directory search path and variables
	3.4.2.7. Miscellaneous variables
	3.5. Customization and Subprocesses
	3.5.1.2. Other common variables
	3.5.2. The Environment File
	3.6. Customization Hints
	4. Basic Shell Programming
	4.2. Shell Variables
	4.2.2. Local Variables in Functions
	4.2.3. Quoting with $@ and $*
	4.2.4. More on Variable Syntax
	4.3. String Operators
	4.3.2. Patterns and Pattern Matching
	4.3.3. Length Operator
	4.3.4. Extended Pattern Matching
	4.4. Command Substitution
	4.5. Advanced Examples: pushd and popd
	5. Flow Control
	5.1.2. Return
	5.1.3. Combinations of Exit Statuses
	5.1.4. Condition Tests
	5.1.4.2. File attribute checking
	5.1.5. Integer Conditionals
	5.2. for
	5.3. case
	5.4. select
	5.5. while and until
	6. Command-Line Options and Typed Variables
	6.1.2. Options with Arguments
	6.1.3. getopts
	6.2. Typed Variables
	6.3. Integer Variables and Arithmetic
	6.3.2. Arithmetic Variables and Assignment
	6.3.3. Arithmetic for Loops
	6.4. Arrays
	7. Input/Output and Command-Line Processing
	7.1.2. File Descriptors
	7.2. String I/O
	7.2.1.2. echo escape sequences
	7.2.2. printf
	7.2.3. read
	7.2.3.2. I/O redirection and multiple commands
	7.2.3.3. Command blocks
	7.2.3.4. Reading user input
	7.3. Command-Line Processing
	7.3.2. command, builtin, and enable
	7.3.3. eval
	8. Process Handling
	8.2. Job Control
	8.2.2. Suspending a Job
	8.3. Signals
	8.3.2. kill
	8.3.3. ps
	8.3.3.2. BSD
	8.4. trap
	8.4.2. Process ID Variables and Temporary Files
	8.4.3. Ignoring Signals
	8.4.4. disown
	8.4.5. Resetting Traps
	8.5. Coroutines
	8.5.2. Advantages and Disadvantages of Coroutines
	8.5.3. Parallelization
	8.6. Subshells
	8.6.2. Nested Subshells
	8.7. Process Substitution
	9. Debugging Shell Programs
	9.1.2. Fake Signals
	9.1.2.2. ERR
	9.1.2.3. DEBUG
	9.1.2.4. RETURN
	9.1.3. Debugging Variables
	9.2. A bash Debugger
	9.2.1.2. exec
	9.2.2. The Preamble
	9.2.3. Debugger Functions
	9.2.3.2. Stepping
	9.2.3.3. Breakpoints
	9.2.3.4. Break conditions
	9.2.3.5. Execution tracing
	9.2.3.6. Debugger limitations
	9.2.4. A Sample bashdb Session
	9.2.5. Exercises
	10. bash Administration
	10.1.2. Command-Line Options
	10.2. Environment Customization
	10.2.2. ulimit
	10.2.3. Types of Global Customization
	10.3. System Security Features
	10.3.2. A System Break-In Scenario
	10.3.3. Privileged Mode
	11. Shell Scripting
	11.1.2. Variables and Constants
	11.2. Starting Up
	11.3. Potential Problems
	11.4. Don&t Use bash
	12. bash for Your System
	12.2. Unpacking the Archive
	12.3. What&s in the Archive
	12.3.2. Configuring and Building bash
	12.3.3. Testing bash
	12.3.4. Potential Problems
	12.3.5. Installing bash as a Login Shell
	12.3.6. Examples
	12.4. Who Do I Turn to?
	12.4.2. Reporting Bugs
	A. Related Shells
	A.2. The IEEE 1003.2 POSIX Shell Standard
	A.3. The Korn Shell
	A.4. pdksh
	A.5. zsh
	A.6. Shell Clones and Unix-like Platforms
	A.6.2. DJGPP
	A.6.3. MKS Toolkit
	A.6.4. AT&T UWIN
	B. Reference Lists
	B.2. Prompt String Customizations
	B.3. Built-In Commands and Reserved Words
	B.4. Built-In Shell Variables
	B.5. Test Operators
	B.6. set Options
	B.7. shopt Options
	B.8. I/O Redirection
	B.9. emacs Mode Commands
	B.10. vi Control Mode Commands
	C. Loadable Built-Ins
	D. Programmable Completion
	Colophon

